ترغب بنشر مسار تعليمي؟ اضغط هنا

FaceLeaks: Inference Attacks against Transfer Learning Models via Black-box Queries

92   0   0.0 ( 0 )
 نشر من قبل Seng Pei Liew
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning is a useful machine learning framework that allows one to build task-specific models (student models) without significantly incurring training costs using a single powerful model (teacher model) pre-trained with a large amount of data. The teacher model may contain private data, or interact with private inputs. We investigate if one can leak or infer such private information without interacting with the teacher model directly. We describe such inference attacks in the context of face recognition, an application of transfer learning that is highly sensitive to personal privacy. Under black-box and realistic settings, we show that existing inference techniques are ineffective, as interacting with individual training instances through the student models does not reveal information about the teacher. We then propose novel strategies to infer from aggregate-level information. Consequently, membership inference attacks on the teacher model are shown to be possible, even when the adversary has access only to the student models. We further demonstrate that sensitive attributes can be inferred, even in the case where the adversary has limited auxiliary information. Finally, defensive strategies are discussed and evaluated. Our extensive study indicates that information leakage is a real privacy threat to the transfer learning framework widely used in real-life situations.

قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) have demonstrated impressive performance on many challenging machine learning tasks. However, DNNs are vulnerable to adversarial inputs generated by adding maliciously crafted perturbations to the benign inputs. As a growi ng number of attacks have been reported to generate adversarial inputs of varying sophistication, the defense-attack arms race has been accelerated. In this paper, we present MODEF, a cross-layer model diversity ensemble framework. MODEF intelligently combines unsupervised model denoising ensemble with supervised model verification ensemble by quantifying model diversity, aiming to boost the robustness of the target model against adversarial examples. Evaluated using eleven representative attacks on popular benchmark datasets, we show that MODEF achieves remarkable defense success rates, compared with existing defense methods, and provides a superior capability of repairing adversarial inputs and making correct predictions with high accuracy in the presence of black-box attacks.
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa r, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.
The query-based black-box attacks, which dont require any knowledge about the attacked models and datasets, have raised serious threats to machine learning models in many real applications. In this work, we study a simple but promising defense techni que, dubbed Random Noise Defense (RND) against query-based black-box attacks, which adds proper Gaussian noise to each query. It is lightweight and can be directly combined with any off-the-shelf models and other defense strategies. However, the theoretical guarantee of random noise defense is missing, and the actual effectiveness of this defense is not yet fully understood. In this work, we present solid theoretical analyses to demonstrate that the defense effect of RND against the query-based black-box attack and the corresponding adaptive attack heavily depends on the magnitude ratio between the random noise added by the defender (i.e., RND) and the random noise added by the attacker for gradient estimation. Extensive experiments on CIFAR-10 and ImageNet verify our theoretical studies. Based on RND, we also propose a stronger defense method that combines RND with Gaussian augmentation training (RND-GT) and achieves better defense performance.
We investigate how an adversary can optimally use its query budget for targeted evasion attacks against deep neural networks in a black-box setting. We formalize the problem setting and systematically evaluate what benefits the adversary can gain by using substitute models. We show that there is an exploration-exploitation tradeoff in that query efficiency comes at the cost of effectiveness. We present two new attack strategies for using substitute models and show that they are as effective as previous query-only techniques but require significantly fewer queries, by up to three orders of magnitude. We also show that an agile adversary capable of switching through different attack techniques can achieve pareto-optimal efficiency. We demonstrate our attack against Google Cloud Vision showing that the difficulty of black-box attacks against real-world prediction APIs is significantly easier than previously thought (requiring approximately 500 queries instead of approximately 20,000 as in previous works).
Transfer learning has become a common practice for training deep learning models with limited labeled data in a target domain. On the other hand, deep models are vulnerable to adversarial attacks. Though transfer learning has been widely applied, its effect on model robustness is unclear. To figure out this problem, we conduct extensive empirical evaluations to show that fine-tuning effectively enhances model robustness under white-box FGSM attacks. We also propose a black-box attack method for transfer learning models which attacks the target model with the adversarial examples produced by its source model. To systematically measure the effect of both white-box and black-box attacks, we propose a new metric to evaluate how transferable are the adversarial examples produced by a source model to a target model. Empirical results show that the adversarial examples are more transferable when fine-tuning is used than they are when the two networks are trained independently.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا