ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing Player Knowledge in a Parallel Programming Educational Game

122   0   0.0 ( 0 )
 نشر من قبل Santiago Ontanon
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper focuses on tracing player knowledge in educational games. Specifically, given a set of concepts or skills required to master a game, the goal is to estimate the likelihood with which the current player has mastery of each of those concepts or skills. The main contribution of the paper is an approach that integrates machine learning and domain knowledge rules to find when the player applied a certain skill and either succeeded or failed. This is then given as input to a standard knowledge tracing module (such as those from Intelligent Tutoring Systems) to perform knowledge tracing. We evaluate our approach in the context of an educational game called Parallel to teach parallel and concurrent programming with data collected from real users, showing our approach can predict students skills with a low mean-squared error.



قيم البحث

اقرأ أيضاً

Computer games represent an ideal research domain for the next generation of personalized digital applications. This paper presents a player-centered framework of AI for game personalization, complementary to the commonly used system-centered approac hes. Built on the Structure of Actions theory, the paper maps out the current landscape of game personalization research and identifies eight open problems that need further investigation. These problems require deep collaboration between technological advancement and player experience design.
Recent findings suggest that humans deploy cognitive mechanism of physics simulation engines to simulate the physics of objects. We propose a framework for bots to deploy probabilistic programming tools for interacting with intuitive physics environm ents. The framework employs a physics simulation in a probabilistic way to infer about moves performed by an agent in a setting governed by Newtonian laws of motion. However, methods of probabilistic programs can be slow in such setting due to their need to generate many samples. We complement the model with a model-free approach to aid the sampling procedures in becoming more efficient through learning from experience during game playing. We present an approach where combining model-free approaches (a convolutional neural network in our model) and model-based approaches (probabilistic physics simulation) is able to achieve what neither could alone. This way the model outperforms an all model-free or all model-based approach. We discuss a case study showing empirical results of the performance of the model on the game of Flappy Bird.
210 - Yang Yang , Jian Shen , Yanru Qu 2020
With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students knowledge status and predicts their performance on new questions. Questions are often numerous in online education systems, and are always associated with much fewer skills. However, the previous literature fails to involve question information together with high-order question-skill correlations, which is mostly limited by data sparsity and multi-skill problems. From the model perspective, previous models can hardly capture the long-term dependency of student exercise history, and cannot model the interactions between student-questions, and student-skills in a consistent way. In this paper, we propose a Graph-based Interaction model for Knowledge Tracing (GIKT) to tackle the above probems. More specifically, GIKT utilizes graph convolutional network (GCN) to substantially incorporate question-skill correlations via embedding propagation. Besides, considering that relevant questions are usually scattered throughout the exercise history, and that question and skill are just different instantiations of knowledge, GIKT generalizes the degree of students master of the question to the interactions between the students current state, the students history related exercises, the target question, and related skills. Experiments on three datasets demonstrate that GIKT achieves the new state-of-the-art performance, with at least 1% absolute AUC improvement.
144 - Moyu Zhang 2021
With the increasing demands of personalized learning, knowledge tracing has become important which traces students knowledge states based on their historical practices. Factor analysis methods mainly use two kinds of factors which are separately rela ted to students and questions to model students knowledge states. These methods use the total number of attempts of students to model students learning progress and hardly highlight the impact of the most recent relevant practices. Besides, current factor analysis methods ignore rich information contained in questions. In this paper, we propose Multi-Factors Aware Dual-Attentional model (MF-DAKT) which enriches question representations and utilizes multiple factors to model students learning progress based on a dual-attentional mechanism. More specifically, we propose a novel student-related factor which records the most recent attempts on relevant concepts of students to highlight the impact of recent exercises. To enrich questions representations, we use a pre-training method to incorporate two kinds of question information including questions relation and difficulty level. We also add a regularization term about questions difficulty level to restrict pre-trained question representations to fine-tuning during the process of predicting students performance. Moreover, we apply a dual-attentional mechanism to differentiate contributions of factors and factor interactions to final prediction in different practice records. At last, we conduct experiments on several real-world datasets and results show that MF-DAKT can outperform existing knowledge tracing methods. We also conduct several studies to validate the effects of each component of MF-DAKT.
Recent advancements in procedural content generation via machine learning enable the generation of video-game levels that are aesthetically similar to human-authored examples. However, the generated levels are often unplayable without additional edit ing. We propose a generate-then-repair framework for automatic generation of playable levels adhering to specific styles. The framework constructs levels using a generative adversarial network (GAN) trained with human-authored examples and repairs them using a mixed-integer linear program (MIP) with playability constraints. A key component of the framework is computing minimum cost edits between the GAN generated level and the solution of the MIP solver, which we cast as a minimum cost network flow problem. Results show that the proposed framework generates a diverse range of playable levels, that capture the spatial relationships between objects exhibited in the human-authored levels.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا