ﻻ يوجد ملخص باللغة العربية
With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students knowledge status and predicts their performance on new questions. Questions are often numerous in online education systems, and are always associated with much fewer skills. However, the previous literature fails to involve question information together with high-order question-skill correlations, which is mostly limited by data sparsity and multi-skill problems. From the model perspective, previous models can hardly capture the long-term dependency of student exercise history, and cannot model the interactions between student-questions, and student-skills in a consistent way. In this paper, we propose a Graph-based Interaction model for Knowledge Tracing (GIKT) to tackle the above probems. More specifically, GIKT utilizes graph convolutional network (GCN) to substantially incorporate question-skill correlations via embedding propagation. Besides, considering that relevant questions are usually scattered throughout the exercise history, and that question and skill are just different instantiations of knowledge, GIKT generalizes the degree of students master of the question to the interactions between the students current state, the students history related exercises, the target question, and related skills. Experiments on three datasets demonstrate that GIKT achieves the new state-of-the-art performance, with at least 1% absolute AUC improvement.
Reasoning in a temporal knowledge graph (TKG) is a critical task for information retrieval and semantic search. It is particularly challenging when the TKG is updated frequently. The model has to adapt to changes in the TKG for efficient training and
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs. To enrich the existing knowledge graphs, recent year
Completion through the embedding representation of the knowledge graph (KGE) has been a research hotspot in recent years. Realistic knowledge graphs are mostly related to time, while most of the existing KGE algorithms ignore the time information. A
This paper focuses on tracing player knowledge in educational games. Specifically, given a set of concepts or skills required to master a game, the goal is to estimate the likelihood with which the current player has mastery of each of those concepts