ترغب بنشر مسار تعليمي؟ اضغط هنا

Player-Centered AI for Automatic Game Personalization: Open Problems

342   0   0.0 ( 0 )
 نشر من قبل Jichen Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computer games represent an ideal research domain for the next generation of personalized digital applications. This paper presents a player-centered framework of AI for game personalization, complementary to the commonly used system-centered approaches. Built on the Structure of Actions theory, the paper maps out the current landscape of game personalization research and identifies eight open problems that need further investigation. These problems require deep collaboration between technological advancement and player experience design.



قيم البحث

اقرأ أيضاً

Explainability has been a goal for Artificial Intelligence (AI) systems since their conception, with the need for explainability growing as more complex AI models are increasingly used in critical, high-stakes settings such as healthcare. Explanation s have often added to an AI system in a non-principled, post-hoc manner. With greater adoption of these systems and emphasis on user-centric explainability, there is a need for a structured representation that treats explainability as a primary consideration, mapping end user needs to specific explanation types and the systems AI capabilities. We design an explanation ontology to model both the role of explanations, accounting for the system and user attributes in the process, and the range of different literature-derived explanation types. We indicate how the ontology can support user requirements for explanations in the domain of healthcare. We evaluate our ontology with a set of competency questions geared towards a system designer who might use our ontology to decide which explanation types to include, given a combination of users needs and a systems capabilities, both in system design settings and in real-time operations. Through the use of this ontology, system designers will be able to make informed choices on which explanations AI systems can and should provide.
Problems of cooperation--in which agents seek ways to jointly improve their welfare--are ubiquitous and important. They can be found at scales ranging from our daily routines--such as driving on highways, scheduling meetings, and working collaborativ ely--to our global challenges--such as peace, commerce, and pandemic preparedness. Arguably, the success of the human species is rooted in our ability to cooperate. Since machines powered by artificial intelligence are playing an ever greater role in our lives, it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation. We see an opportunity for the field of artificial intelligence to explicitly focus effort on this class of problems, which we term Cooperative AI. The objective of this research would be to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems. Central goals include building machine agents with the capabilities needed for cooperation, building tools to foster cooperation in populations of (machine and/or human) agents, and otherwise conducting AI research for insight relevant to problems of cooperation. This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms. However, Cooperative AI is not the union of these existing areas, but rather an independent bet about the productivity of specific kinds of conversations that involve these and other areas. We see opportunity to more explicitly focus on the problem of cooperation, to construct unified theory and vocabulary, and to build bridges with adjacent communities working on cooperation, including in the natural, social, and behavioural sciences.
The paper describes a Multisource AI Scorecard Table (MAST) that provides the developer and user of an artificial intelligence (AI)/machine learning (ML) system with a standard checklist focused on the principles of good analysis adopted by the intel ligence community (IC) to help promote the development of more understandable systems and engender trust in AI outputs. Such a scorecard enables a transparent, consistent, and meaningful understanding of AI tools applied for commercial and government use. A standard is built on compliance and agreement through policy, which requires buy-in from the stakeholders. While consistency for testing might only exist across a standard data set, the community requires discussion on verification and validation approaches which can lead to interpretability, explainability, and proper use. The paper explores how the analytic tradecraft standards outlined in Intelligence Community Directive (ICD) 203 can provide a framework for assessing the performance of an AI system supporting various operational needs. These include sourcing, uncertainty, consistency, accuracy, and visualization. Three use cases are presented as notional examples that support security for comparative analysis.
To facilitate the widespread acceptance of AI systems guiding decision-making in real-world applications, it is key that solutions comprise trustworthy, integrated human-AI systems. Not only in safety-critical applications such as autonomous driving or medicine, but also in dynamic open world systems in industry and government it is crucial for predictive models to be uncertainty-aware and yield trustworthy predictions. Another key requirement for deployment of AI at enterprise scale is to realize the importance of integrating human-centered design into AI systems such that humans are able to use systems effectively, understand results and output, and explain findings to oversight committees. While the focus of this symposium was on AI systems to improve data quality and technical robustness and safety, we welcomed submissions from broadly defined areas also discussing approaches addressing requirements such as explainable models, human trust and ethical aspects of AI.
This paper focuses on tracing player knowledge in educational games. Specifically, given a set of concepts or skills required to master a game, the goal is to estimate the likelihood with which the current player has mastery of each of those concepts or skills. The main contribution of the paper is an approach that integrates machine learning and domain knowledge rules to find when the player applied a certain skill and either succeeded or failed. This is then given as input to a standard knowledge tracing module (such as those from Intelligent Tutoring Systems) to perform knowledge tracing. We evaluate our approach in the context of an educational game called Parallel to teach parallel and concurrent programming with data collected from real users, showing our approach can predict students skills with a low mean-squared error.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا