ترغب بنشر مسار تعليمي؟ اضغط هنا

A Constructive Proof of Massers Theorem

86   0   0.0 ( 0 )
 نشر من قبل Alexander Barrios
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+epsilon}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $ where $c_{4}$ and $c_{6}$ are the invariants associated to a minimal model of $E$ and $N_{E}$ is the conductor of $E$. We say $E$ is a good elliptic curve if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $. Masser showed that there are infinitely many good Frey curves. Here we give a constructive proof of this assertion.



قيم البحث

اقرأ أيضاً

62 - Florian K. Richter 2020
Let $Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $fcolonmathbb{N}tomathbb{C}$ one has [ frac{1}{N}sum_{n=1}^N, f(Omega(n)+1)=frac{1}{N}sum_{n=1}^N, f(Omega(n))+mathrm{o}_{Ntoinfty}(1). ] This yields a new elementary proof of the Prime Number Theorem.
We give a general method of extending unital completely positive maps to amalgamated free products of C*-algebras. As an application we give a dilation theoretic proof of Bocas Theorem.
155 - Gareth A. Jones 2019
Greenberg proved that every countable group $A$ is isomorphic to the automorphism group of a Riemann surface, which can be taken to be compact if $A$ is finite. We give a short and explicit algebraic proof of this for finitely generated groups $A$.
92 - Nico Spronk 2016
We outline a simple proof of Hulanickis theorem, that a locally compact group is amenable if and only if the left regular representation weakly contains all unitary representations. This combines some elements of the literature which have not appeared together, before.
This article contains a complete proof of Gabrielovs rank Theorem, a fundamental result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron, we develop formal-geometric techniques which clarify the difficult parts of t he original proof. These techniques are of independent interest, and we illustrate this by adding a new (very short) proof of the Abhyankar-Jung Theorem. We include, furthermore, new extensions of the rank Theorem (concerning the Zariski main Theorem and elimination theory) to commutative algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا