ترغب بنشر مسار تعليمي؟ اضغط هنا

A new elementary proof of the Prime Number Theorem

63   0   0.0 ( 0 )
 نشر من قبل Florian Karl Richter
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Omega(n)$ denote the number of prime factors of $n$. We show that for any bounded $fcolonmathbb{N}tomathbb{C}$ one has [ frac{1}{N}sum_{n=1}^N, f(Omega(n)+1)=frac{1}{N}sum_{n=1}^N, f(Omega(n))+mathrm{o}_{Ntoinfty}(1). ] This yields a new elementary proof of the Prime Number Theorem.



قيم البحث

اقرأ أيضاً

211 - Kui Liu , Jie Wu , Zhishan Yang 2021
Let $Lambda(n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. In this note, we prove that for any $varepsilon>0$ the asymptotic formula $$ sum_{nle x} LambdaBig(Big[frac{x}{n}Big]Big) = xsum_{dge 1} frac{Lambda( d)}{d(d+1)} + O_{varepsilon}big(x^{9/19+varepsilon}big) qquad (xtoinfty)$$ holds. This improves a recent result of Bordell`es, which requires $frac{97}{203}$ in place of $frac{9}{19}$.
265 - Aasa Feragen 2010
Hanners theorem is a classical theorem in the theory of retracts and extensors in topological spaces, which states that a local ANE is an ANE. While Hanners original proof of the theorem is quite simple for separable spaces, it is rather involved for the general case. We provide a proof which is not only short, but also elementary, relying only on well-known classical point-set topology.
The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+epsilon}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $ where $c_{4}$ and $c_{6}$ are the invariants associated to a minimal model of $E$ and $N_{E}$ is the conductor of $E$. We say $E$ is a good elliptic curve if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $. Masser showed that there are infinitely many good Frey curves. Here we give a constructive proof of this assertion.
75 - Qing Han , Pingzhi Yuan 2019
In 1956, Je$acute{s}$manowicz conjectured that, for positive integers $m$ and $n$ with $m>n, , gcd(m,, n)=1$ and $m otequiv npmod{2}$, the exponential Diophantine equation $(m^2-n^2)^x+(2mn)^y=(m^2+n^2)^z$ has only the positive integer solution $(x,, y,, z)=(2,,2,,2)$. Recently, Ma and Chen cite{MC17} proved the conjecture if $4 ot|mn$ and $yge2$. In this paper, we present an elementary proof of the result of Ma and Chen cite{MC17}.
85 - Werner Kirsch 2018
A sequence of random variables is called exchangeable if the joint distribution of the sequence is unchanged by any permutation of the indices. De Finettis theorem characterizes all ${0,1}$-valued exchangeable sequences as a mixture of sequences of i ndependent random variables. We present an new, elementary proof of de Finettis Theorem. The purpose of this paper is to make this theorem accessible to a broader community through an essentially self-contained proof.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا