ﻻ يوجد ملخص باللغة العربية
This article contains a complete proof of Gabrielovs rank Theorem, a fundamental result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron, we develop formal-geometric techniques which clarify the difficult parts of the original proof. These techniques are of independent interest, and we illustrate this by adding a new (very short) proof of the Abhyankar-Jung Theorem. We include, furthermore, new extensions of the rank Theorem (concerning the Zariski main Theorem and elimination theory) to commutative algebra.
We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give an explicit sufficient and necessar
We give a general method of extending unital completely positive maps to amalgamated free products of C*-algebras. As an application we give a dilation theoretic proof of Bocas Theorem.
In this paper, we prove a conjecture posed by Li-Yang in cite{ly3}. We prove the following result: Let $f(z)$ be a nonconstant entire function, and let $a(z) otequivinfty, b(z) otequivinfty$ be two distinct small meromorphic functions of $f(z)$. If $
The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+epsilon}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $ where $c_{4}$
Greenberg proved that every countable group $A$ is isomorphic to the automorphism group of a Riemann surface, which can be taken to be compact if $A$ is finite. We give a short and explicit algebraic proof of this for finitely generated groups $A$.