ترغب بنشر مسار تعليمي؟ اضغط هنا

A proof of Bocas Theorem

340   0   0.0 ( 0 )
 نشر من قبل Evgenios Kakariadis T.A.
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a general method of extending unital completely positive maps to amalgamated free products of C*-algebras. As an application we give a dilation theoretic proof of Bocas Theorem.



قيم البحث

اقرأ أيضاً

The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+epsilon}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $ where $c_{4}$ and $c_{6}$ are the invariants associated to a minimal model of $E$ and $N_{E}$ is the conductor of $E$. We say $E$ is a good elliptic curve if $N_{E}^{6}<max!left{ leftvert c_{4}^{3}rightvert,c_{6}^{2}right} $. Masser showed that there are infinitely many good Frey curves. Here we give a constructive proof of this assertion.
155 - Gareth A. Jones 2019
Greenberg proved that every countable group $A$ is isomorphic to the automorphism group of a Riemann surface, which can be taken to be compact if $A$ is finite. We give a short and explicit algebraic proof of this for finitely generated groups $A$.
92 - Nico Spronk 2016
We outline a simple proof of Hulanickis theorem, that a locally compact group is amenable if and only if the left regular representation weakly contains all unitary representations. This combines some elements of the literature which have not appeared together, before.
106 - Nigel Higson , Qijun Tan 2016
We give a geometric proof of a theorem of Weyl on the continuous part of the spectrum of Sturm-Liouville operators on the half-line with asymptotically constant coefficients. Earlier proofs due to Weyl and Kodaira depend on special features of Greens functions for linear ordinary differential operators; ours might offer better prospects for generalization to higher dimensions, as required for example in noncommutative harmonic analysis.
This article contains a complete proof of Gabrielovs rank Theorem, a fundamental result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron, we develop formal-geometric techniques which clarify the difficult parts of t he original proof. These techniques are of independent interest, and we illustrate this by adding a new (very short) proof of the Abhyankar-Jung Theorem. We include, furthermore, new extensions of the rank Theorem (concerning the Zariski main Theorem and elimination theory) to commutative algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا