ﻻ يوجد ملخص باللغة العربية
We investigate a PL topology question: which circle bundles can be triangulated over a given triangulation of the base? The question got a simple answer emphasizing the role of minimal triangulations encoded by local systems of circular permutations of vertices of the base simplices. The answer is based on an experimental fact: classical Huntington transitivity axiom for cyclic orders can be expressed as the universal binary Chern cocycle.
We extend the quandle cocycle invariant to oriented singular knots and links using algebraic structures called emph{oriented singquandles} and assigning weight functions at both regular and singular crossings. This invariant coincides with the classi
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivari
In this paper, we explore minimal contact triangulations on contact 3-manifolds. We give many explicit examples of contact triangulations that are close to minimal ones. The main results of this article say that on any closed oriented 3-manifold the
We determine which three-manifolds are dominated by products. The result is that a closed, oriented, connected three-manifold is dominated by a product if and only if it is finitely covered either by a product or by a connected sum of copies of the p
Tight triangulations are exotic, but highly regular objects in combinatorial topology. A triangulation is tight if all its piecewise linear embeddings into a Euclidean space are as convex as allowed by the topology of the underlying manifold. Tight t