ﻻ يوجد ملخص باللغة العربية
The study of triangulations on manifolds is closely related to understanding the three-dimensional homology cobordism group. We review here what is known about this group, with an emphasis on the local equivalence methods coming from Pin(2)- equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.
In this paper we define and investigate Z/2-homology cobordism invariants of Z/2-homology 3-spheres which turn out to be related to classical invariants of knots. As an application we show that many lens spaces have infinite order in the Z/2-homology
For each integral homology sphere $Y$, a function $Gamma_Y$ on the set of integers is constructed. It is established that $Gamma_Y$ depends only on the homology cobordism of $Y$ and it recovers the Fr{o}yshov invariant. A relation between $Gamma_Y$ a
We give simple homological conditions for a rational homology 3-sphere Y to have infinite order in the rational homology cobordism group, and for a collection of rational homology spheres to be linearly independent. These translate immediately to sta
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
We review the construction and context of a stable homotopy refinement of Khovanov homology.