ﻻ يوجد ملخص باللغة العربية
Tight triangulations are exotic, but highly regular objects in combinatorial topology. A triangulation is tight if all its piecewise linear embeddings into a Euclidean space are as convex as allowed by the topology of the underlying manifold. Tight triangulations are conjectured to be strongly minimal, and proven to be so for dimensions $leq 3$. However, in spite of substantial theoretical results about such triangulations, there are precious few examples. In fact, apart from dimension two, we do not know if there are infinitely many of them in any given dimension. In this paper, we present a computer-friendly combinatorial scheme to obtain tight triangulations, and present new examples in dimensions three, four and five. Furthermore, we describe a family of tight triangulated $d$-manifolds, with $2^{d-1} lfloor d / 2 rfloor ! lfloor (d-1) / 2 rfloor !$ isomorphically distinct members for each dimension $d geq 2$. While we still do not know if there are infinitely many tight triangulations in a fixed dimension $d > 2$, this result shows that there are abundantly many.
It is well known that a triangulation of a closed 2-manifold is tight with respect to a field of characteristic two if and only if it is neighbourly; and it is tight with respect to a field of odd characteristic if and only if it is neighbourly and o
In this paper, we explore minimal contact triangulations on contact 3-manifolds. We give many explicit examples of contact triangulations that are close to minimal ones. The main results of this article say that on any closed oriented 3-manifold the
We describe several methods to construct minimal foliations by hyperbolic surfaces on closed 3-manifolds, and discuss the properties of the examples thus obtained.
We investigate a PL topology question: which circle bundles can be triangulated over a given triangulation of the base? The question got a simple answer emphasizing the role of minimal triangulations encoded by local systems of circular permutations
For a field $mathbb{F}$, the notion of $mathbb{F}$-tightness of simplicial complexes was introduced by Kuhnel. Kuhnel and Lutz conjectured that any $mathbb{F}$-tight triangulation of a closed manifold is the most economic of all possible triangulatio