ﻻ يوجد ملخص باللغة العربية
We focus on adversarial patrolling games on arbitrary graphs, where the Defender can control a mobile resource, the targets are alarmed by an alarm system, and the Attacker can observe the actions of the mobile resource of the Defender and perform different attacks exploiting multiple resources. This scenario can be modeled as a zero-sum extensive-form game in which each player can play multiple times. The game tree is exponentially large both in the size of the graph and in the number of attacking resources. We show that when the number of the Attackers resources is free, the problem of computing the equilibrium path is NP-hard, while when the number of resources is fixed, the equilibrium path can be computed in poly-time. We provide a dynamic-programming algorithm that, given the number of the Attackers resources, computes the equilibrium path requiring poly-time in the size of the graph and exponential time in the number of the resources. Furthermore, since in real-world scenarios it is implausible that the Defender knows the number of attacking resources, we study the robustness of the Defenders strategy when she makes a wrong guess about that number. We show that even the error of just a single resource can lead to an arbitrary inefficiency, when the inefficiency is defined as the ratio of the Defenders utilities obtained with a wrong guess and a correct guess. However, a more suitable definition of inefficiency is given by the difference of the Defenders utilities: this way, we observe that the higher the error in the estimation, the higher the loss for the Defender. Then, we investigate the performance of online algorithms when no information about the Attackers resources is available. Finally, we resort to randomized online algorithms showing that we can obtain a competitive factor that is twice better than the one that can be achieved by any deterministic online algorithm.
When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that
Security Games employ game theoretical tools to derive resource allocation strategies in security domains. Recent works considered the presence of alarm systems, even suffering various forms of uncertainty, and showed that disregarding alarm signals
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define
We study an information-structure design problem (a.k.a. persuasion) with a single sender and multiple receivers with actions of a priori unknown types, independently drawn from action-specific marginal distributions. As in the standard Bayesian pers