ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Learning System for Predicting Size and Fit in Fashion E-Commerce

346   0   0.0 ( 0 )
 نشر من قبل Abdul-Saboor Sheikh
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Personalized size and fit recommendations bear crucial significance for any fashion e-commerce platform. Predicting the correct fit drives customer satisfaction and benefits the business by reducing costs incurred due to size-related returns. Traditional collaborative filtering algorithms seek to model customer preferences based on their previous orders. A typical challenge for such methods stems from extreme sparsity of customer-article orders. To alleviate this problem, we propose a deep learning based content-collaborative methodology for personalized size and fit recommendation. Our proposed method can ingest arbitrary customer and article data and can model multiple individuals or intents behind a single account. The method optimizes a global set of parameters to learn population-level abstractions of size and fit relevant information from observed customer-article interactions. It further employs customer and article specific embedding variables to learn their properties. Together with learned entity embeddings, the method maps additional customer and article attributes into a latent space to derive personalized recommendations. Application of our method to two publicly available datasets demonstrate an improvement over the state-of-the-art published results. On two proprietary datasets, one containing fit feedback from fashion experts and the other involving customer purchases, we further outperform comparable methodologies, including a recent Bayesian approach for size recommendation.

قيم البحث

اقرأ أيضاً

Many machine intelligence techniques are developed in E-commerce and one of the most essential components is the representation of IDs, including user ID, item ID, product ID, store ID, brand ID, category ID etc. The classical encoding based methods (like one-hot encoding) are inefficient in that it suffers sparsity problems due to its high dimension, and it cannot reflect the relationships among IDs, either homogeneous or heterogeneous ones. In this paper, we propose an embedding based framework to learn and transfer the representation of IDs. As the implicit feedbacks of users, a tremendous amount of item ID sequences can be easily collected from the interactive sessions. By jointly using these informative sequences and the structural connections among IDs, all types of IDs can be embedded into one low-dimensional semantic space. Subsequently, the learned representations are utilized and transferred in four scenarios: (i) measuring the similarity between items, (ii) transferring from seen items to unseen items, (iii) transferring across different domains, (iv) transferring across different tasks. We deploy and evaluate the proposed approach in Hema App and the results validate its effectiveness.
In this paper we present an end-to-end framework for addressing the problem of dynamic pricing (DP) on E-commerce platform using methods based on deep reinforcement learning (DRL). By using four groups of different business data to represent the stat es of each time period, we model the dynamic pricing problem as a Markov Decision Process (MDP). Compared with the state-of-the-art DRL-based dynamic pricing algorithms, our approaches make the following three contributions. First, we extend the discrete set problem to the continuous price set. Second, instead of using revenue as the reward function directly, we define a new function named difference of revenue conversion rates (DRCR). Third, the cold-start problem of MDP is tackled by pre-training and evaluation using some carefully chosen historical sales data. Our approaches are evaluated by both offline evaluation method using real dataset of Alibaba Inc., and online field experiments starting from July 2018 with thousands of items, lasting for months on Tmall.com. To our knowledge, there is no other DP field experiment using DRL before. Field experiment results suggest that DRCR is a more appropriate reward function than revenue, which is widely used by current literature. Also, continuous price sets have better performance than discrete sets and our approaches significantly outperformed the manual pricing by operation experts.
Recent advances in the e-commerce fashion industry have led to an exploration of novel ways to enhance buyer experience via improved personalization. Predicting a proper size for an item to recommend is an important personalization challenge, and is being studied in this work. Earlier works in this field either focused on modeling explicit buyer fitment feedback or modeling of only a single aspect of the problem (e.g., specific category, brand, etc.). More recent works proposed richer models, either content-based or sequence-based, better accounting for content-based aspects of the problem or better modeling the buyers online journey. However, both these approaches fail in certain scenarios: either when encountering unseen items (sequence-based models) or when encountering new users (content-based models). To address the aforementioned gaps, we propose PreSizE - a novel deep learning framework which utilizes Transformers for accurate size prediction. PreSizE models the effect of both content-based attributes, such as brand and category, and the buyers purchase history on her size preferences. Using an extensive set of experiments on a large-scale e-commerce dataset, we demonstrate that PreSizE is capable of achieving superior prediction performance compared to previous state-of-the-art baselines. By encoding item attributes, PreSizE better handles cold-start cases with unseen items, and cases where buyers have little past purchase data. As a proof of concept, we demonstrate that size predictions made by PreSizE can be effectively integrated into an existing production recommender system yielding very effective features and significantly improving recommendations.
Typical e-commerce platforms contain millions of products in the catalog. Users visit these platforms and enter search queries to retrieve their desired products. Therefore, showing the relevant products at the top is essential for the success of e-c ommerce platforms. We approach this problem by learning low dimension representations for queries and product descriptions by leveraging user click-stream data as our main source of signal for product relevance. Starting from GRU-based architectures as our baseline model, we move towards a more advanced transformer-based architecture. This helps the model to learn contextual representations of queries and products to serve better search results and understand the user intent in an efficient manner. We perform experiments related to pre-training of the Transformer based RoBERTa model using a fashion corpus and fine-tuning it over the triplet loss. Our experiments on the product ranking task show that the RoBERTa model is able to give an improvement of 7.8% in Mean Reciprocal Rank(MRR), 15.8% in Mean Average Precision(MAP) and 8.8% in Normalized Discounted Cumulative Gain(NDCG), thus outperforming our GRU based baselines. For the product retrieval task, RoBERTa model is able to outperform other two models with an improvement of 164.7% in Precision@50 and 145.3% in Recall@50. In order to highlight the importance of pre-training RoBERTa for fashion domain, we qualitatively compare already pre-trained RoBERTa on standard datasets with our custom pre-trained RoBERTa over a fashion corpus for the query token prediction task. Finally, we also show a qualitative comparison between GRU and RoBERTa results for product retrieval task for some test queries.
Nowadays, live-stream and short video shopping in E-commerce have grown exponentially. However, the sellers are required to manually match images of the selling products to the timestamp of exhibition in the untrimmed video, resulting in a complicate d process. To solve the problem, we present an innovative demonstration of multi-modal retrieval system called Fashion Focus, which enables to exactly localize the product images in the online video as the focuses. Different modality contributes to the community localization, including visual content, linguistic features and interaction context are jointly investigated via presented multi-modal learning. Our system employs two procedures for analysis, including video content structuring and multi-modal retrieval, to automatically achieve accurate video-to-shop matching. Fashion Focus presents a unified framework that can orientate the consumers towards relevant product exhibitions during watching videos and help the sellers to effectively deliver the products over search and recommendation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا