ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Search: Learning Query and Product Representations in Fashion E-commerce

83   0   0.0 ( 0 )
 نشر من قبل Lakshya Kumar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Typical e-commerce platforms contain millions of products in the catalog. Users visit these platforms and enter search queries to retrieve their desired products. Therefore, showing the relevant products at the top is essential for the success of e-commerce platforms. We approach this problem by learning low dimension representations for queries and product descriptions by leveraging user click-stream data as our main source of signal for product relevance. Starting from GRU-based architectures as our baseline model, we move towards a more advanced transformer-based architecture. This helps the model to learn contextual representations of queries and products to serve better search results and understand the user intent in an efficient manner. We perform experiments related to pre-training of the Transformer based RoBERTa model using a fashion corpus and fine-tuning it over the triplet loss. Our experiments on the product ranking task show that the RoBERTa model is able to give an improvement of 7.8% in Mean Reciprocal Rank(MRR), 15.8% in Mean Average Precision(MAP) and 8.8% in Normalized Discounted Cumulative Gain(NDCG), thus outperforming our GRU based baselines. For the product retrieval task, RoBERTa model is able to outperform other two models with an improvement of 164.7% in Precision@50 and 145.3% in Recall@50. In order to highlight the importance of pre-training RoBERTa for fashion domain, we qualitatively compare already pre-trained RoBERTa on standard datasets with our custom pre-trained RoBERTa over a fashion corpus for the query token prediction task. Finally, we also show a qualitative comparison between GRU and RoBERTa results for product retrieval task for some test queries.

قيم البحث

اقرأ أيضاً

With the rapid growth of e-Commerce, online product search has emerged as a popular and effective paradigm for customers to find desired products and engage in online shopping. However, there is still a big gap between the products that customers rea lly desire to purchase and relevance of products that are suggested in response to a query from the customer. In this paper, we propose a robust way of predicting relevance scores given a search query and a product, using techniques involving machine learning, natural language processing and information retrieval. We compare conventional information retrieval models such as BM25 and Indri with deep learning models such as word2vec, sentence2vec and paragraph2vec. We share some of our insights and findings from our experiments.
Nowadays e-commerce search has become an integral part of many peoples shopping routines. One critical challenge in todays e-commerce search is the semantic matching problem where the relevant items may not contain the exact terms in the user query. In this paper, we propose a novel deep neural network based approach to query rewriting, in order to tackle this problem. Specifically, we formulate query rewriting into a cyclic machine translation problem to leverage abundant click log data. Then we introduce a novel cyclic consistent training algorithm in conjunction with state-of-the-art machine translation models to achieve the optimal performance in terms of query rewriting accuracy. In order to make it practical in industrial scenarios, we optimize the syntax tree construction to reduce computational cost and online serving latency. Offline experiments show that the proposed method is able to rewrite hard user queries into more standard queries that are more appropriate for the inverted index to retrieve. Comparing with human curated rule-based method, the proposed model significantly improves query rewriting diversity while maintaining good relevancy. Online A/B experiments show that it improves core e-commerce business metrics significantly. Since the summer of 2020, the proposed model has been launched into our search engine production, serving hundreds of millions of users.
Showing items that do not match search query intent degrades customer experience in e-commerce. These mismatches result from counterfactual biases of the ranking algorithms toward noisy behavioral signals such as clicks and purchases in the search lo gs. Mitigating the problem requires a large labeled dataset, which is expensive and time-consuming to obtain. In this paper, we develop a deep, end-to-end model that learns to effectively classify mismatches and to generate hard mismatched examples to improve the classifier. We train the model end-to-end by introducing a latent variable into the cross-entropy loss that alternates between using the real and generated samples. This not only makes the classifier more robust but also boosts the overall ranking performance. Our model achieves a relative gain compared to baselines by over 26% in F-score, and over 17% in Area Under PR curve. On live search traffic, our model gains significant improvement in multiple countries.
Building a recommendation system that serves billions of users on daily basis is a challenging problem, as the system needs to make astronomical number of predictions per second based on real-time user behaviors with O(1) time complexity. Such kind o f large scale recommendation systems usually rely heavily on pre-built index of products to speedup the recommendation service so that online user waiting time is un-noticeable. One important indexing structure is the product-product index, where one can retrieval a list of ranked products given a seed product. The index can be viewed as a weighted product-product graph. In this paper, we present our novel technologies to efficiently build such kind of indexed product graphs. In particular, we propose the Swing algorithm to capture the substitute relationships between products, which can utilize the substructures of user-item click bi-partitive graph. Then we propose the Surprise algorithm for the modeling of complementary product relationships, which utilizes product category information and solves the sparsity problem of user co-purchasing graph via clustering technique. Base on these two approaches, we can build the basis product graph for recommendation in Taobao. The approaches are evaluated comprehensively with both offline and online experiments, and the results demonstrate the effectiveness and efficiency of the work.
Understanding search queries is critical for shopping search engines to deliver a satisfying customer experience. Popular shopping search engines receive billions of unique queries yearly, each of which can depict any of hundreds of user preferences or intents. In order to get the right results to customers it must be known queries like inexpensive prom dresses are intended to not only surface results of a certain product type but also products with a low price. Referred to as query intents, examples also include preferences for author, brand, age group, or simply a need for customer service. Recent works such as BERT have demonstrated the success of a large transformer encoder architecture with language model pre-training on a variety of NLP tasks. We adapt such an architecture to learn intents for search queries and describe methods to account for the noisiness and sparseness of search query data. We also describe cost effective ways of hosting transformer encoder models in context with low latency requirements. With the right domain-specific training we can build a shareable deep learning model whose internal representation can be reused for a variety of query understanding tasks including query intent identification. Model sharing allows for fewer large models needed to be served at inference time and provides a platform to quickly build and roll out new search query classifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا