ﻻ يوجد ملخص باللغة العربية
In this paper we present an end-to-end framework for addressing the problem of dynamic pricing (DP) on E-commerce platform using methods based on deep reinforcement learning (DRL). By using four groups of different business data to represent the states of each time period, we model the dynamic pricing problem as a Markov Decision Process (MDP). Compared with the state-of-the-art DRL-based dynamic pricing algorithms, our approaches make the following three contributions. First, we extend the discrete set problem to the continuous price set. Second, instead of using revenue as the reward function directly, we define a new function named difference of revenue conversion rates (DRCR). Third, the cold-start problem of MDP is tackled by pre-training and evaluation using some carefully chosen historical sales data. Our approaches are evaluated by both offline evaluation method using real dataset of Alibaba Inc., and online field experiments starting from July 2018 with thousands of items, lasting for months on Tmall.com. To our knowledge, there is no other DP field experiment using DRL before. Field experiment results suggest that DRCR is a more appropriate reward function than revenue, which is widely used by current literature. Also, continuous price sets have better performance than discrete sets and our approaches significantly outperformed the manual pricing by operation experts.
Personalized size and fit recommendations bear crucial significance for any fashion e-commerce platform. Predicting the correct fit drives customer satisfaction and benefits the business by reducing costs incurred due to size-related returns. Traditi
The slate re-ranking problem considers the mutual influences between items to improve user satisfaction in e-commerce, compared with the point-wise ranking. Previous works either directly rank items by an end to end model, or rank items by a score fu
A* is a popular path-finding algorithm, but it can only be applied to those domains where a good heuristic function is known. Inspired by recent methods combining Deep Neural Networks (DNNs) and trees, this study demonstrates how to train a heuristic
In a large E-commerce platform, all the participants compete for impressions under the allocation mechanism of the platform. Existing methods mainly focus on the short-term return based on the current observations instead of the long-term return. In
Many machine intelligence techniques are developed in E-commerce and one of the most essential components is the representation of IDs, including user ID, item ID, product ID, store ID, brand ID, category ID etc. The classical encoding based methods