ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizations of thermal stability and electrical performance of Au-Ni coating on CuCrZr substrate for high vacuum radio-frequency contact application

86   0   0.0 ( 0 )
 نشر من قبل Julien Hillairet
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z Chen




اسأل ChatGPT حول البحث

Radio-frequency (RF) contacts-which are an example of electrical contacts-are commonly employed on accelerators and nuclear fusion experimental devices. RF contacts with a current load of 2 kA for steady-state operation were designed for application to the International Thermonuclear Experimental Reactor (ITER) device. In contrast to the typical working conditions of general commercial electrical contacts, those of RF contacts employed on fusion devices include high vacuum, high temperature, and neutron radiation. CuCrZr is currently of interest as a base material for the manufacture of louvers of RF contacts, which has excellent thermal and electrical properties and has low creep rate at 250 {textdegree}C. In this study, a hard Au coating (Au-Ni) was electroplated on CuCrZr samples and the samples were then subjected to thermal aging treatment at 250 {textdegree}C for 500 h in order to simulate the vacuum-commissioning process of the ITER. The effects of thermal aging on the hardness, elastic modulus, crystallite size, and compositions of the coating were investigated via microstructural and mechanical characterizations of the coating material. Metal atom migration in different coating layers during thermal aging was characterized and evaluated via scanning electron microscopy/energy dispersive X-ray spectroscopy observations of the cross-sectional surfaces, and the obtained results could be used to directly select the coating thickness for the final RF contact component. The contact resistance-an important parameter of the RF contact-was measured in a dedicated testbed built to simulate fusion reactor conditions between CuCrZr pins and stainless steel plates coated with Au-Ni and Rh, respectively.

قيم البحث

اقرأ أيضاً

Vertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO2 as barrier material. The temperature dependent current flow t hrough the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO2 interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A/cm^2, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V^{-1}, outperforming state-of-the-art metal-insulator-metal and MIG diodes. RF power detection based on MIG diodes is demonstrated, showing a responsivity of 2.8 V/W at 2.4 GHz and 1.1 V/W at 49.4 GHz.
71 - G. Ciovati 2020
Superconducting radio-frequency cavities are commonly used in modern particle accelerators for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb and are cooled by a liquid helium bath at a temperature of ~2 K. The size, cost and complexity of operating a particle accelerator with a liquid helium refrigerator makes the current cavity technology not favorable for use in industrial-type accelerators. We developed a multi-metallic 1.495~GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a ~2 $mu$m thick layer of Nb$_3$Sn on the inner surface, exposed to the rf field, deposited on a ~3 mm thick bulk Nb shell and a bulk Cu shell, of thickness $geqslant 5$ mm deposited on the outer surface by electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface magnetic field of ~36 mT with a quality factor of $2times 10^9$. The cavity cooled by the crycooler achieved a peak surface magnetic field of ~29 mT, equivalent to an accelerating gradient of 6.5 MV/m, and it was able to operate in continuous-wave with as high as 5 W dissipation in the cavity for 1 h without any thermal breakdown. This result represents a paradigm shift in the technology of superconducting accelerator cavities.
Establishing good electrical contacts to nanoscale devices is a major issue for modern technology and contacting 2D materials is no exception to the rule. One-dimensional edge-contacts to graphene were recently shown to outperform surface contacts bu t the method remains difficult to scale up. We report a resist-free and scalable method to fabricate few graphene layers with electrical contacts in a single growth step. This method derives from the discovery reported here of the growth of few graphene layers on a metallic carbide by thermal annealing of a carbide forming metallic film on SiC in high vacuum. We exploit the combined effect of edge-contact and partially-covalent surface epitaxy between graphene and the metallic carbide to fabricate devices in which low contact-resistance and Josephson effect are observed. Implementing this approach could significantly simplify the realization of large-scale graphene circuits.
Si hyperdoped with chalcogens (S, Se, Te) is well-known to possess unique properties such as an insulator-to-metal transition and a room-temperature sub-bandgap absorption. These properties are expected to be sensitive to a post-synthesis thermal ann ealing, since hyperdoped Si is a thermodynamically metastable material. Thermal stability of the as-fabricated hyperdoped Si is of great importance for the device fabrication process involving temperature-dependent steps like ohmic contact formation. Here, we report on the thermal stability of the as-fabricated Te-hyperdoped Si subjected to isochronal furnace anneals from 250 {deg}C to 1200 {deg}C. We demonstrate that Te-hyperdoped Si exhibits thermal stability up to 400 {deg}C with a duration of 10 minutes that even helps to further improve the crystalline quality, the electrical activation of Te dopants and the room-temperature sub-band gap absorption. At higher temperatures, however, Te atoms are found to move out from the substitutional sites with a migration energy of EM = 2.1+/-0.1 eV forming inactive clusters and precipitates that impair the structural, electrical and optical properties. These results provide further insight into the underlying physical state transformation of Te dopants in a metastable compositional regime caused by post-synthesis thermal annealing as well as pave the way for the fabrication of advanced hyperdoped Si-based devices.
Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains under-explored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinni ng at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 ${mu}A/{mu}m$ at 80 K and >200 ${mu}A/{mu}m$ at 300 K) and relatively low contact resistance (1.2 to 2 $k{Omega}cdot{mu}m$ from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals, extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer h-BN between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly de-pin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا