ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial electrical contact to graphene on SiC

252   0   0.0 ( 0 )
 نشر من قبل V. T. Renard
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Establishing good electrical contacts to nanoscale devices is a major issue for modern technology and contacting 2D materials is no exception to the rule. One-dimensional edge-contacts to graphene were recently shown to outperform surface contacts but the method remains difficult to scale up. We report a resist-free and scalable method to fabricate few graphene layers with electrical contacts in a single growth step. This method derives from the discovery reported here of the growth of few graphene layers on a metallic carbide by thermal annealing of a carbide forming metallic film on SiC in high vacuum. We exploit the combined effect of edge-contact and partially-covalent surface epitaxy between graphene and the metallic carbide to fabricate devices in which low contact-resistance and Josephson effect are observed. Implementing this approach could significantly simplify the realization of large-scale graphene circuits.



قيم البحث

اقرأ أيضاً

An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical propert ies of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.
151 - Jan Kunc , Yike Hu , James Palmer 2013
A method is proposed to extract pure Raman spectrum of epitaxial graphene on SiC by using a Non-negative Matrix Factorization. It overcomes problems of negative spectral intensity and poorly resolved spectra resulting from a simple subtraction of a S iC background from the experimental data. We also show that the method is similar to deconvolution, for spectra composed of multiple sub- micrometer areas, with the advantage that no prior information on the impulse response functions is needed. We have used this property to characterize the Raman laser beam. The method capability in efficient data smoothing is also demonstrated.
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense r esearch, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100 {mu}m. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen.
We demonstrate that the confocal laser scanning microscopy (CLSM) provides a non-destructive, highly-efficient characterization method for large-area epitaxial graphene and graphene nanostructures on SiC substrates, which can be applied in ambient ai r without sample preparation and is insusceptible to surface charging or surface contamination. Based on the variation of reflected intensity from regions covered by interfacial layer, single layer, bilayer, or few layer graphene, and through the correlation to the results from Raman spectroscopy and SPM, CLSM images with a high resolution (around 150 nm) reveal that the intensity contrast has distinct feature for undergrown graphene (mixing of dense, parallel graphene nanoribbons and interfacial layer), continuous graphene, and overgrown graphene. Moreover, CLSM has a real acquisition time hundreds of times faster per unit area than the supplementary characterization methods. We believe that the confocal laser scanning microscope will be an indispensable tool for mass-produced epitaxial graphene or applicable 2D materials.
270 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di scussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا