ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability

72   0   0.0 ( 0 )
 نشر من قبل Gianluigi Ciovati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ciovati




اسأل ChatGPT حول البحث

Superconducting radio-frequency cavities are commonly used in modern particle accelerators for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb and are cooled by a liquid helium bath at a temperature of ~2 K. The size, cost and complexity of operating a particle accelerator with a liquid helium refrigerator makes the current cavity technology not favorable for use in industrial-type accelerators. We developed a multi-metallic 1.495~GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a ~2 $mu$m thick layer of Nb$_3$Sn on the inner surface, exposed to the rf field, deposited on a ~3 mm thick bulk Nb shell and a bulk Cu shell, of thickness $geqslant 5$ mm deposited on the outer surface by electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface magnetic field of ~36 mT with a quality factor of $2times 10^9$. The cavity cooled by the crycooler achieved a peak surface magnetic field of ~29 mT, equivalent to an accelerating gradient of 6.5 MV/m, and it was able to operate in continuous-wave with as high as 5 W dissipation in the cavity for 1 h without any thermal breakdown. This result represents a paradigm shift in the technology of superconducting accelerator cavities.

قيم البحث

اقرأ أيضاً

We demonstrate practical accelerating gradients on a superconducting radiofrequency (SRF) accelerator cavity with cryocooler conduction cooling, a cooling technique that does not involve the complexities of the conventional liquid helium bath. A desi gn is first presented that enables conduction cooling an elliptical-cell SRF cavity. Implementing this design, a single cell 650 MHz Nb3Sn cavity coupled using high purity aluminum thermal links to a 4 K pulse tube cryocooler generated accelerating gradients up to 6.6 MV/m at 100% duty cycle. The experiments were carried out with the cavity-cryocooler assembly in a simple vacuum vessel, completely free of circulating liquid cryogens. We anticipate that this cryocooling technique will make the SRF technology accessible to interested accelerator researchers who lack access to full-stack helium cryogenic systems. Furthermore, the technique can lead to SRF based compact sources of high average power electron beams for environmental protection and industrial applications. A concept of such an SRF compact accelerator is presented.
We report on the evaluation of microwave frequency synthesis using two cryogenic sapphire oscillators developed at the University of Western Australia. A down converter is used to make comparisons between microwave clocks at different frequencies, wh ere the synthesized signal has a stability not significantly different from the reference oscillator. By combining the CSO with a H-maser, a reference source of arbitrary frequency at X-band can be synthesized with a fractional frequency stability of sub-$4 times 10^{-15}$ for integration times between 1 s and 10,000 s.
Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made o f medium purity Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 C was done in a newly designed vacuum induction furnace. Q0 values of the order of 2x1010 at 2.0 K and peak surface magnetic field (Bp) of 90 mT were achieved reproducibly. A Q0-value of (5+-1)1010 at 2.0 K and Bp = 90 mT was obtained after heat treatment at 1400 C. This is the highest value ever reported at this temperature, frequency and field. Samples heat treated with the cavity at 1400 C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide, increased carbon and nitrogen content but reduced hydrogen concentration compared to a non heat-treated sample.
High-repetition-rate sources of bright electron bunches have a wide range of applications. They can directly be employed as probes in electron-scattering setups, or serve as a backbone for the generation of radiation over a broad range of the electro magnetic spectrum. This paper describes the development of a compact sub-Mega-electronvolt (sub-MeV) electron-source setup capable of operating at MHz repetition rates and forming sub-picosecond electron bunches with transverse emittance below 20~nm. The setup relies on a conduction-cooled superconducting single-cell resonator with its geometry altered to enhance the field at the surface of the emitter. The system is designed to accommodate cooling using a model a $2$~W at 4.2 K pulse tube cryogen-free cryocooler. Although we focus on the case of a photoemitted electron bunch, the scheme could be adapted to other emission mechanisms.
The concept of the radio-frequency superconducting nanowire single-photon detector (RF-SNSPD) allows frequency-division multiplexing (FDM) of the bias and readout lines of several SNSPDs. Using this method, a multi-pixel array can be operated by only one feed line. Consequently, the system complexity as well as the heat load is significantly reduced. To allocate many pixels into a small bandwidth the quality factor of each device is crucial. In this paper, we present an improved RF-SNSPD design. This new design enables a simple tuning of the quality factor as well as the resonant frequency. With a two-pixel device we have demonstrated the operation without crosstalk between the detectors and showed the time, spatial and photon number resolution. Thereby a single pixel requires only a bandwidth of 14 MHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا