ترغب بنشر مسار تعليمي؟ اضغط هنا

Contact Engineering High Performance n-Type MoTe2 Transistors

135   0   0.0 ( 0 )
 نشر من قبل Eric Pop
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains under-explored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 ${mu}A/{mu}m$ at 80 K and >200 ${mu}A/{mu}m$ at 300 K) and relatively low contact resistance (1.2 to 2 $k{Omega}cdot{mu}m$ from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals, extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer h-BN between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly de-pin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics.



قيم البحث

اقرأ أيضاً

84 - Di Wu , Wei Li , Amritesh Rai 2019
The vertical stacking of van der Waals (vdW) materials introduces a new degree of freedom to the research of two-dimensional (2D) systems. The interlayer coupling strongly influences the band structure of the heterostructures, resulting in novel prop erties that can be utilized for electronic and optoelectronic applications. Based on microwave microscopy studies, we report quantitative electrical imaging on gated molybdenum disulfide (MoS2)/tungsten diselenide (WSe2) heterostructure devices, which exhibit an intriguing anti-ambipolar effect in the transfer characteristics. Interestingly, in the region with significant source-drain current, electrons in the n-type MoS2 and holes in the p-type WSe2 segments are nearly balanced, whereas the heterostructure area is depleted of mobile charges. The configuration is analogous to the p-i-n diode, where the injected carriers dominate in the recombination current. The spatial evolution of local conductance can be ascribed to the lateral band bending and formation of depletion regions along the line of MoS2-heterostructure-WSe2. Our work vividly demonstrates the microscopic origin of novel transport behaviors, which is important for the vibrant field of vdW heterojunction research.
254 - Muhammad A. Alam , Mengwei Si , 2019
The elegant simplicity of the device concept and the urgent need for a new transistor at the twilight of Moores law have inspired many researchers in industry and academia to explore the physics and technology of negative capacitance field effect tra nsistor (NC-FET). Although hundreds of papers have been published, the validity of quasi-static NC and the frequency-reliability limits of NC-FET are still being debated. The concept of NC - if conclusively demonstrated - will have broad impacts on device physics and technology development. Here, the authors provide a critical review of recent progress on NC-FETs research and some starting points for a coherent discussion.
In this work, we demonstrate high performance indium-tin-oxide (ITO) transistors with the channel thickness down to 1 nm and ferroelectric Hf0.5Zr0.5O2 as gate dielectric. On-current of 0.243 A/mm is achieved on sub-micron gate-length ITO transistors with a channel thickness of 1 nm, while it increases to as high as 1.06 A/mm when the channel thickness increases to 2 nm. A raised source/drain structure with a thickness of 10 nm is employed, contributing to a low contact resistance of 0.15 {Omega}mm and a low contact resistivity of 1.1{times}10-7 {Omega}cm2. The ITO transistor with a recessed channel and ferroelectric gating demonstrates several advantages over 2D semiconductor transistors and other thin film transistors, including large-area wafer-size nanometer thin film formation, low contact resistance and contact resistivity, atomic thin channel being immunity to short channel effects, large gate modulation of high carrier density by ferroelectric gating, high-quality gate dielectric and passivation formation, and a large bandgap for the low-power back-end-of-line (BEOL) CMOS application.
We study the interplay of electron and photon spin in non-reciprocal materials. Traditionally, the primary mechanism to design non-reciprocal photonic devices has been magnetic fields in conjunction with magnetic oxides, such as iron garnets. In this work, we present an alternative paradigm that allows tunability and reconfigurability of the non-reciprocity through spintronic approaches. The proposed design uses the high-spin-orbit coupling of a narrow-band gap semiconductor (InSb) with ferromagnetic dopants. A combination of the intrinsic and a gate-applied electric field gives rise to a strong external Rashba spin-orbit coupling (RSOC) in a magnetically doped InSb film. The RSOC which is gate alterable is shown to adjust the magnetic permeability tensor via the electron g-factor of the medium. We use electronic band structure calculations (k$cdot$p theory) to show the gate-adjustable RSOC manifest itself in the non-reciprocal coefficient of photon fields via shifts in the Kerr and Faraday rotations. In addition, we show that photon spin properties of dipolar emitters placed in the vicinity of a non-reciprocal electromagnetic environment is distinct from reciprocal counterparts. The Purcell factor (F$_{p}$) of a spin-polarized emitter (right-handed circular dipole) is significantly enhanced due to a larger g-factor while a left-handed dipole remains essentially unaffected. Our work can lead to electron spin controlled reconfigurable non-reciprocal photonic devices.
In this work we test graphene electrodes in nano-metric channel n-type Organic Field EffectTransistors (OFETs) based on thermally evaporated thin films of perylene-3,4,9,10-tetracarboxylic acid diimide derivative (PDIF-CN2). By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied biases, in contrast with the supra-linear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrodes devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ~140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current (SCLC) in short channel OFETs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا