ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel family of high-order numerical schemes for the gradient flow models based on the scalar auxiliary variable (SAV) approach, which is named the high-order scalar auxiliary variable (HSAV) method. The newly proposed schemes could be shown to reach arbitrarily high order in time while preserving the energy dissipation law without any restriction on the time step size (i.e., unconditionally energy stable). The HSAV strategy is rather general that it does not depend on the specific expression of the effective free energy, such that it applies to a class of thermodynamically consistent gradient flow models arriving at semi-discrete high-order energy-stable schemes. We then employ the Fourier pseudospectral method for spatial discretization. The fully discrete schemes are also shown to be unconditionally energy stable. Furthermore, we present several numerical experiments on several widely-used gradient flow models, to demonstrate the accuracy, efficiency and unconditionally energy stability of the HSAV schemes. The numerical results verify that the HSAV schemes can reach the expected order of accuracy, and it allows a much larger time step size to reach the same accuracy than the standard SAV schemes.
We present a systematical approach to developing arbitrarily high order, unconditionally energy stable numerical schemes for thermodynamically consistent gradient flow models that satisfy energy dissipation laws. Utilizing the energy quadratization (
We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ
In this paper, we develop a new class of high-order energy-preserving schemes for the Korteweg-de Vries equation based on the quadratic auxiliary variable technique, which can conserve the original energy of the system. By introducing a quadratic aux