ﻻ يوجد ملخص باللغة العربية
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energy dissipation remains preserved without imposing any restriction on time steps and meshes. We achieve this in two steps. First, taking advantage of the penalty free DG method introduced by Liu and Yin [J Sci. Comput. 77:467--501, 2018] for spatial discretization, we reformulate an extended linearized ODE system by the energy quadratization (EQ) approach. Second, we apply an s-stage algebraically stable RK method for temporal discretization. The resulting fully discrete DG schemes are linear and unconditionally energy stable. In addition, we introduce a prediction-correction procedure to improve both the accuracy and stability of the scheme. We illustrate the effectiveness of the proposed schemes by numerical tests with benchmark problems.
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and
The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a {delta}-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasti
This paper studies high-order accurate entropy stable nodal discontinuous Galerkin (DG) schemes for the ideal special relativistic magnetohydrodynamics (RMHD). It is built on the modified RMHD equations with a particular source term, which is analogo
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
We present a systematical approach to developing arbitrarily high order, unconditionally energy stable numerical schemes for thermodynamically consistent gradient flow models that satisfy energy dissipation laws. Utilizing the energy quadratization (