ﻻ يوجد ملخص باللغة العربية
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and we establish their energy stability. This class includes as a special case high order, unconditionally stable schemes obtained via convexity splitting. The new schemes are demonstrated on a variety of gradient flows, including partial differential equations that are gradient flow with respect to the Wasserstein (mass transport) distance.
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ
We present a systematical approach to developing arbitrarily high order, unconditionally energy stable numerical schemes for thermodynamically consistent gradient flow models that satisfy energy dissipation laws. Utilizing the energy quadratization (
In this paper, we propose a novel family of high-order numerical schemes for the gradient flow models based on the scalar auxiliary variable (SAV) approach, which is named the high-order scalar auxiliary variable (HSAV) method. The newly proposed sch
We present a methodology to construct efficient high-order in time accurate numerical schemes for a class of gradient flows with appropriate Lipschitz continuous nonlinearity. There are several ingredients to the strategy: the exponential time differ
This paper reviews different numerical methods for specific examples of Wasserstein gradient flows: we focus on nonlinear Fokker-Planck equations,but also discuss discretizations of the parabolic-elliptic Keller-Segel model and of the fourth order th