ﻻ يوجد ملخص باللغة العربية
We present a paradigm for developing arbitrarily high order, linear, unconditionally energy stable numerical algorithms for gradient flow models. We apply the energy quadratization (EQ) technique to reformulate the general gradient flow model into an equivalent gradient flow model with a quadratic free energy and a modified mobility. Given solutions up to $t_n=n Delta t$ with $Delta t$ the time step size, we linearize the EQ-reformulated gradient flow model in $(t_n, t_{n+1}]$ by extrapolation. Then we employ an algebraically stable Runge-Kutta method to discretize the linearized model in $(t_n, t_{n+1}]$. Then we use the Fourier pseudo-spectral method for the spatial discretization to match the order of accuracy in time. The resulting fully discrete scheme is linear, unconditionally energy stable, uniquely solvable, and may reach arbitrarily high order. Furthermore, we present a family of linear schemes based on prediction-correction methods to complement the new linear schemes. Some benchmark numerical examples are given to demonstrate the accuracy and efficiency of the schemes.
We present a systematical approach to developing arbitrarily high order, unconditionally energy stable numerical schemes for thermodynamically consistent gradient flow models that satisfy energy dissipation laws. Utilizing the energy quadratization (
In this paper, we propose a novel family of high-order numerical schemes for the gradient flow models based on the scalar auxiliary variable (SAV) approach, which is named the high-order scalar auxiliary variable (HSAV) method. The newly proposed sch
This paper proposes a new class of arbitarily high-order conservative numerical schemes for the generalized Korteweg-de Vries (KdV) equation. This approach is based on the scalar auxiliary variable (SAV) method. The equation is reformulated into an e
We introduce a class of high order accurate, semi-implicit Runge-Kutta schemes in the general setting of evolution equations that arise as gradient flow for a cost function, possibly with respect to an inner product that depends on the solution, and
We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen--Cahn equations. We apply a $k$th-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped m