ترغب بنشر مسار تعليمي؟ اضغط هنا

Blind Federated Edge Learning

386   0   0.0 ( 0 )
 نشر من قبل Mohammad Mohammadi Amiri Dr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog `over-the-air aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. Unlike recent literature on over-the-air edge learning, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. Instead, the PS is equipped multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.

قيم البحث

اقرأ أيضاً

We study collaborative machine learning systems where a massive dataset is distributed across independent workers which compute their local gradient estimates based on their own datasets. Workers send their estimates through a multipath fading multip le access channel with orthogonal frequency division multiplexing to mitigate the frequency selectivity of the channel. We assume that there is no channel state information (CSI) at the workers, and the parameter server (PS) employs multiple antennas to align the received signals. To reduce the power consumption and the hardware costs, we employ complex-valued low-resolution digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), at the transmitter and the receiver sides, respectively, and study the effects of practical low-cost DACs and ADCs on the learning performance. Our theoretical analysis shows that the impairments caused by low-resolution DACs and ADCs, including those of one-bit DACs and ADCs, do not prevent the convergence of the federated learning algorithm, and the multipath channel effects vanish when a sufficient number of antennas are used at the PS. We also validate our theoretical results via simulations, and demonstrate that using low-resolution, even one-bit, DACs and ADCs causes only a slight decrease in the learning accuracy.
Edge machine learning involves the development of learning algorithms at the network edge to leverage massive distributed data and computation resources. Among others, the framework of federated edge learning (FEEL) is particularly promising for its data-privacy preservation. FEEL coordinates global model training at a server and local model training at edge devices over wireless links. In this work, we explore the new direction of energy-efficient radio resource management (RRM) for FEEL. To reduce devices energy consumption, we propose energy-efficient strategies for bandwidth allocation and scheduling. They adapt to devices channel states and computation capacities so as to reduce their sum energy consumption while warranting learning performance. In contrast with the traditional rate-maximization designs, the derived optimal policies allocate more bandwidth to those scheduled devices with weaker channels or poorer computation capacities, which are the bottlenecks of synchronized model updates in FEEL. On the other hand, the scheduling priority function derived in closed form gives preferences to devices with better channels and computation capacities. Substantial energy reduction contributed by the proposed strategies is demonstrated in learning experiments.
319 - Shuai Wang , Rui Wang , Qi Hao 2020
While machine-type communication (MTC) devices generate massive data, they often cannot process this data due to limited energy and computation power. To this end, edge intelligence has been proposed, which collects distributed data and performs mach ine learning at the edge. However, this paradigm needs to maximize the learning performance instead of the communication throughput, for which the celebrated water-filling and max-min fairness algorithms become inefficient since they allocate resources merely according to the quality of wireless channels. This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model. To get insights into LCPA, an asymptotic optimal solution is derived. The solution shows that the transmit powers are inversely proportional to the channel gain, and scale exponentially with the learning parameters. Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
Federated edge learning (FEEL) has emerged as a revolutionary paradigm to develop AI services at the edge of 6G wireless networks as it supports collaborative model training at a massive number of mobile devices. However, model communication over wir eless channels, especially in uplink model uploading of FEEL, has been widely recognized as a bottleneck that critically limits the efficiency of FEEL. Although over-the-air computation can alleviate the excessive cost of radio resources in FEEL model uploading, practical implementations of over-the-air FEEL still suffer from several challenges, including strong straggler issues, large communication overheads, and potential privacy leakage. In this article, we study these challenges in over-the-air FEEL and leverage reconfigurable intelligent surface (RIS), a key enabler of future wireless systems, to address these challenges. We study the state-of-the-art solutions on RIS-empowered FEEL and explore the promising research opportunities for adopting RIS to enhance FEEL performance.
By deploying machine-learning algorithms at the network edge, edge learning can leverage the enormous real-time data generated by billions of mobile devices to train AI models, which enable intelligent mobile applications. In this emerging research a rea, one key direction is to efficiently utilize radio resources for wireless data acquisition to minimize the latency of executing a learning task at an edge server. Along this direction, we consider the specific problem of retransmission decision in each communication round to ensure both reliability and quantity of those training data for accelerating model convergence. To solve the problem, a new retransmission protocol called data-importance aware automatic-repeat-request (importance ARQ) is proposed. Unlike the classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty which helps learning and can be measured using the model under training. Underpinning the proposed protocol is a derived elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This relation facilitates the design of a simple threshold based policy for importance ARQ. The policy is first derived based on the classic classifier model of support vector machine (SVM), where the uncertainty of a data sample is measured by its distance to the decision boundary. The policy is then extended to the more complex model of convolutional neural networks (CNN) where data uncertainty is measured by entropy. Extensive experiments have been conducted for both the SVM and CNN using real datasets with balanced and imbalanced distributions. Experimental results demonstrate that importance ARQ effectively copes with channel fading and noise in wireless data acquisition to achieve faster model convergence than the conventional channel-aware ARQ.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا