ﻻ يوجد ملخص باللغة العربية
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated it on homogeneous spinless fermion chains with impurities. Here we present extensions of this method to inhomogeneous systems, models with phonons, and the spin conductance of electronic models. The method is applied to a spinless fermion wire-lead model, the homogeneous spinless Holstein model, and the Hubbard model. Its capabilities are demonstrated by comparison with the predictions of Luttinger liquid theory combined with Bethe Ansatz solutions and other numerical methods. We find a complex behavior for quantum wires coupled to interacting leads when the sign of the interaction (repulsive/attractive) differs in wire and leads. The renormalization of the conductance given by the Luttinger parameter in purely fermionic systems is shown to remain valid in the Luttinger liquid phase of the Holstein model with phononic degrees of freedom.
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show
We adapt the block-Lanczos density-matrix renormalization-group technique to study the spin transport in a spin chain coupled to two non-interacting fermionic leads. As an example, we consider leads described by two-dimensional tight-binding models o
We study the spectral density of electrons rho in an interacting quantum dot (QD) with a hybridization lambda to a non-interacting QD, which in turn is coupled to a non-interacting conduction band. The system corresponds to an impurity Anderson model
We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems.The dynamical DMRG is used to compute the linear response of a finite system t
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton