ﻻ يوجد ملخص باللغة العربية
We study the spectral density of electrons rho in an interacting quantum dot (QD) with a hybridization lambda to a non-interacting QD, which in turn is coupled to a non-interacting conduction band. The system corresponds to an impurity Anderson model in which the conduction band has a Lorentzian density of states of width Delta2. We solved the model using perturbation theory in the Coulomb repulsion U (PTU) up to second order and a slave-boson mean-field approximation (SBMFA). The PTU works surprisingly well near the exactly solvable limit Delta2 -> 0. For fixed U and large enough lambda or small enough Delta2, the Kondo peak in rho(omega) splits into two peaks. This splitting can be understood in terms of weakly interacting quasiparticles. Before the splitting takes place the universal properties of the model in the Kondo regime are lost. Using the SBMFA, simple analytical expressions for the occurrence of split peaks are obtained. For small or moderate Delta2, the side bands of rho(omega) have the form of narrow resonances, that were missed in previous studies using the numerical renormalization group. This technique also has shortcomings for describing properly the split Kondo peaks. As the temperature is increased, the intensity of the split Kondo peaks decreases, but it is not completely suppressed at high temperatures.
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated i
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge
The time-dependent non-crossing approximation is used to study the transient current in a single electron transistor attached asymmetrically to two leads following a sudden change in the energy of the dot level. We show that for asymmetric coupling,
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context o