ترغب بنشر مسار تعليمي؟ اضغط هنا

Density-matrix renormalization group method for the conductance of one-dimensional correlated systems using the Kubo formula

94   0   0.0 ( 0 )
 نشر من قبل Eric Jeckelmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We improve the density-matrix renormalization group (DMRG) evaluation of the Kubo formula for the zero-temperature linear conductance of one-dimensional correlated systems.The dynamical DMRG is used to compute the linear response of a finite system to an applied AC source-drain voltage, then the low-frequency finite-system response is extrapolated to the thermodynamic limit to obtain the DC conductance of an infinite system. The method is demonstrated on the one-dimensional spinless fermion model at half filling. Our method is able to replicate several predictions of the Luttinger liquid theory such as the renormalization of the conductance in an homogeneous conductor, the universal effects of a single barrier, and the resonant tunneling through a double barrier.



قيم البحث

اقرأ أيضاً

159 - Zi-Xiang Hu , Z. Papic , S. Johri 2012
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton ians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy.The ground state energies of the Coulomb Hamiltonian at $ u=1/3$ and $ u=5/2$ filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
129 - G. Alvarez 2009
The purpose of this paper is (i) to present a generic and fully functional implementation of the density-matrix renormalization group (DMRG) algorithm, and (ii) to describe how to write additional strongly-correlated electron models and geometries by using templated classes. Besides considering general models and geometries, the code implements Hamiltonian symmetries in a generic way and parallelization over symmetry-related matrix blocks.
We introduce a versatile and practical framework for applying matrix product state techniques to continuous quantum systems. We divide space into multiple segments and generate continuous basis functions for the many-body state in each segment. By co mbining this mapping with existing numerical Density-Matrix Renormalization Group routines, we show how one can accurately obtain the ground-state wave function, spatial correlations, and spatial entanglement entropy directly in the continuum. For a prototypical mesoscopic system of strongly-interacting bosons we demonstrate faster convergence than standard grid-based discretization. We illustrate the power of our approach by studying a superfluid-insulator transition in an external potential. We outline how one can directly apply or generalize this technique to a wide variety of experimentally relevant problems across condensed matter physics and quantum field theory.
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated i t on homogeneous spinless fermion chains with impurities. Here we present extensions of this method to inhomogeneous systems, models with phonons, and the spin conductance of electronic models. The method is applied to a spinless fermion wire-lead model, the homogeneous spinless Holstein model, and the Hubbard model. Its capabilities are demonstrated by comparison with the predictions of Luttinger liquid theory combined with Bethe Ansatz solutions and other numerical methods. We find a complex behavior for quantum wires coupled to interacting leads when the sign of the interaction (repulsive/attractive) differs in wire and leads. The renormalization of the conductance given by the Luttinger parameter in purely fermionic systems is shown to remain valid in the Luttinger liquid phase of the Holstein model with phononic degrees of freedom.
The numerical study of anyonic systems is known to be highly challenging due to their non-bosonic, non-fermionic particle exchange statistics, and with the exception of certain models for which analytical solutions exist, very little is known about t heir collective behaviour as a result. Meanwhile, the density matrix renormalisation group (DMRG) algorithm is an exceptionally powerful numerical technique for calculating the ground state of a low-dimensional lattice Hamiltonian, and has been applied to the study of bosonic, fermionic, and group-symmetric systems. The recent development of a tensor network formulation for anyonic systems opened up the possibility of studying these systems using algorithms such as DMRG, though this has proved challenging both in terms of programming complexity and computational cost. This paper presents the implementation of DMRG for finite anyonic systems, including a detailed scheme for the implementation of anyonic tensors with optimal scaling of computational cost. The anyonic DMRG algorithm is demonstrated by calculating the ground state energy of the Golden Chain, which has become the benchmark system for the numerical study of anyons, and is shown to produce results comparable to those of the anyonic TEBD algorithm and superior to the variationally optimised anyonic MERA, at far lesser computational cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا