ترغب بنشر مسار تعليمي؟ اضغط هنا

Block-Lanczos density-matrix renormalization-group approach to spin transport in Heisenberg chains coupled to leads

160   0   0.0 ( 0 )
 نشر من قبل Florian Lange
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We adapt the block-Lanczos density-matrix renormalization-group technique to study the spin transport in a spin chain coupled to two non-interacting fermionic leads. As an example, we consider leads described by two-dimensional tight-binding models on a square lattice. Although the simulations are carried out using a chain representation of the leads, observables in the original two-dimensional lattice can be calculated by reversing the block-Lanczos transformation. This is demonstrated for leads with Rashba spin-orbit coupling.



قيم البحث

اقرأ أيضاً

We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimension s. This new scheme, named BL-DMRG method, allows us to calculate not only local but also spatially dependent static and dynamical quantities of the ground state for general Anderson impurity models without losing elaborate geometrical information of the lattice. We show that the BL-DMRG method can be easily extended to treat a multi-orbital Anderson impurity model. We also show that the symmetry adapted BL bases can be utilized, when it is appropriate, to reduce the computational cost. As a demonstration, we apply the BL-DMRG method to three different models for graphene: (i) a single adatom on the honeycomb lattice, (ii) a substitutional impurity in the honeycomb lattice, and (iii) an effective model for a single carbon vacancy in graphene. Our analysis reveals that, for the particle-hole symmetric case at half filling of electron density, the ground state of model (i) behaves as an isolated magnetic impurity with no Kondo screening while the ground state of the other two models forms a spin singlet state. We also calculate the real-space dependence of the spin-spin correlation functions between the impurity site and the conduction sites for these three models. Our results clearly show that, reflecting the presence of absence of unscreened magnetic moment at the impurity site, the spin-spin correlation functions decay as $r^{-3}$, differently from the non-interacting limit ($r^{-2}$), for model (i) and as $ r^{-4}$, exactly the same as the non-interacting limit, for models (ii) and (iii) in the asymptotic $r$, where $r$ is the distance between the impurity site and the conduction site.
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated i t on homogeneous spinless fermion chains with impurities. Here we present extensions of this method to inhomogeneous systems, models with phonons, and the spin conductance of electronic models. The method is applied to a spinless fermion wire-lead model, the homogeneous spinless Holstein model, and the Hubbard model. Its capabilities are demonstrated by comparison with the predictions of Luttinger liquid theory combined with Bethe Ansatz solutions and other numerical methods. We find a complex behavior for quantum wires coupled to interacting leads when the sign of the interaction (repulsive/attractive) differs in wire and leads. The renormalization of the conductance given by the Luttinger parameter in purely fermionic systems is shown to remain valid in the Luttinger liquid phase of the Holstein model with phononic degrees of freedom.
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievab le efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.
79 - C. J. Gazza , M. E. Torio , 2006
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show n that this local density of states is suppressed by the parallel polarization of the leads. In this case we are able to estimate the length of the Kondo cloud, and to relate its behavior to that suppression. Another important result of our study is that the tunnel magnetoresistance as a function of the quantum dot on-site energy is minimum and negative at the symmetric point.
We study the elementary excitations of a model Hamiltonian for the $pi$-electrons in poly-diacetylene chains. In these materials, the bare band gap is only half the size of the observed single-particle gap and the binding energy of the exciton of 0.5 eV amounts to 20% of the single-particle gap. Therefore, exchange and correlations due to the long-range Coulomb interaction require a numerically exact treatment which we carry out using the density-matrix renormalization group (DMRG) method. Employing both the Hubbard--Ohno potential and the screened potential in one dimension, we reproduce the experimental results for the binding energy of the singlet exciton and its polarizability. Our results indicate that there are optically dark states below the singlet exciton, in agreement with experiment. In addition, we find a weakly bound second exciton with a binding energy of 0.1 eV. The energies in the triplet sector do not match the experimental data quantitatively, probably because we do not include polaronic relaxation effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا