ﻻ يوجد ملخص باللغة العربية
We adapt the block-Lanczos density-matrix renormalization-group technique to study the spin transport in a spin chain coupled to two non-interacting fermionic leads. As an example, we consider leads described by two-dimensional tight-binding models on a square lattice. Although the simulations are carried out using a chain representation of the leads, observables in the original two-dimensional lattice can be calculated by reversing the block-Lanczos transformation. This is demonstrated for leads with Rashba spin-orbit coupling.
We introduce a block Lanczos (BL) recursive technique to construct quasi-one-dimensional models, suitable for density-matrix renormalization group (DMRG) calculations, from single- as well as multiple-impurity Anderson models in any spatial dimension
In a previous paper [J.-M. Bischoff and E. Jeckelmann, Phys. Rev. B 96, 195111 (2017)] we introduced a density-matrix renormalization group method for calculating the linear conductance of one-dimensional correlated quantum systems and demonstrated i
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievab
A quantum dot coupled to ferromagnetically polarized one-dimensional leads is studied numerically using the density matrix renormalization group method. Several real space properties and the local density of states at the dot are computed. It is show
We study the elementary excitations of a model Hamiltonian for the $pi$-electrons in poly-diacetylene chains. In these materials, the bare band gap is only half the size of the observed single-particle gap and the binding energy of the exciton of 0.5