ﻻ يوجد ملخص باللغة العربية
Type-II nodal line semimetal (NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands which have the same sign in their slopes along the radial direction of the loop. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-II NLS by tuning its spin-orbit coupling (SOC). In this paper, high quality Mg3Bi2 films are grown by molecular beam epitaxy (MBE). By in-situ angle resolved photoemission spectroscopy (ARPES), a pair of surface resonance bands (SRBs) around Gamma point is clearly seen. It shows that Mg3Bi2 films grown by MBE is Mg(1)-terminated by comparing the ARPES data with the first principles calculations results. And, the temperature dependent weak anti-localization (WAL) effect in Mg3Bi2 films is observed under low magnetic field, which shows a clear two dimensional (2D) e-e scattering characteristics by fitting with the Hikami-Larkin-Nagaoka (HLN) model. Combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states TSSs, which paves the way for Mg3Bi2 as an ideal materials platform for studying the exotic features of type-II nodal line semimetals (NLSs) and the topological phase transition by tuning its SOC.
The surface electronic properties of the important topological insulator Bi2Te3 are shown to be robust under an extended surface preparation procedure which includes exposure to atmosphere and subsequent cleaning and recrystallization by an optimized
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r
We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were invest
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of