ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Evidence of the Topological Surface States in Mg3Bi2 Films Grown by Molecular Beam Epitaxy

124   0   0.0 ( 0 )
 نشر من قبل Tong Zhou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type-II nodal line semimetal (NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands which have the same sign in their slopes along the radial direction of the loop. According to the theoretical prediction, Mg3Bi2 is an ideal candidate for studying the type-II NLS by tuning its spin-orbit coupling (SOC). In this paper, high quality Mg3Bi2 films are grown by molecular beam epitaxy (MBE). By in-situ angle resolved photoemission spectroscopy (ARPES), a pair of surface resonance bands (SRBs) around Gamma point is clearly seen. It shows that Mg3Bi2 films grown by MBE is Mg(1)-terminated by comparing the ARPES data with the first principles calculations results. And, the temperature dependent weak anti-localization (WAL) effect in Mg3Bi2 films is observed under low magnetic field, which shows a clear two dimensional (2D) e-e scattering characteristics by fitting with the Hikami-Larkin-Nagaoka (HLN) model. Combining with ARPES, magneto-transport measurements and the first principles calculations, this work proves that Mg3Bi2 is a semimetal with topological surface states TSSs, which paves the way for Mg3Bi2 as an ideal materials platform for studying the exotic features of type-II nodal line semimetals (NLSs) and the topological phase transition by tuning its SOC.



قيم البحث

اقرأ أيضاً

The surface electronic properties of the important topological insulator Bi2Te3 are shown to be robust under an extended surface preparation procedure which includes exposure to atmosphere and subsequent cleaning and recrystallization by an optimized in-situ sputter-anneal procedure under ultra high vacuum conditions. Clear Dirac-cone features are displayed in high-resolution angle-resolved photoemission spectra from the resulting samples, indicating remarkable insensitivity of the topological surface state to cleaning-induced surface roughness.
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r eport the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were invest igated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {guillemotright}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO3 layers, especially in view of their integration in devices.
163 - B. Li , W. G. Chen , X. Guo 2016
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2 Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we have revealed the strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.
Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_2$Te$_3$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne$$^2$, where $h$ is the Plancks constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا