ﻻ يوجد ملخص باللغة العربية
The surface electronic properties of the important topological insulator Bi2Te3 are shown to be robust under an extended surface preparation procedure which includes exposure to atmosphere and subsequent cleaning and recrystallization by an optimized in-situ sputter-anneal procedure under ultra high vacuum conditions. Clear Dirac-cone features are displayed in high-resolution angle-resolved photoemission spectra from the resulting samples, indicating remarkable insensitivity of the topological surface state to cleaning-induced surface roughness.
Type-II nodal line semimetal (NLS) is a new quantum state hosting one-dimensional closed loops formed by the crossing of two bands which have the same sign in their slopes along the radial direction of the loop. According to the theoretical predictio
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r
We have investigated the growth of BaTiO3 thin films deposited on pure and 1% Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were invest
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2
We report comprehensive x-ray diffraction studies of the crystal structure and epitaxy of thin films of the topological insulator Bi2Te3 grown on Si (1 1 1). The films are single crystals of high crystalline quality, which strongly depends on that of