ترغب بنشر مسار تعليمي؟ اضغط هنا

High quality atomically thin PtSe2 films grown by molecular beam epitaxy

174   0   0.0 ( 0 )
 نشر من قبل Mingzhe Yan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we report the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.

قيم البحث

اقرأ أيضاً

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we used molecular beam epitaxy (MBE) to grow atomically thin MoSe$_2$ on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe$_2$. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.
PtSe2 is attracting considerable attention as a high mobility two-dimensional material with envisionned applications in microelectronics, photodetection and spintronics. The growth of high quality PtSe2 on insulating substrates with wafer-scale unifo rmity is a prerequisite for electronic transport investigations and practical use in devices. Here, we report the growth of highly oriented few-layers PtSe2 on ZnO(0001) by molecular beam epitaxy. The crystalline structure of the films is characterized with electron and X-ray diffraction, atomic force microscopy and transmission electron microscopy. The comparison with PtSe2 layers grown on graphene, sapphire, mica, SiO2 and Pt(111) shows that among insulating substrates, ZnO(0001) yields films of superior structural quality. Hall measurements performed on epitaxial ZnO/PtSe2 with 5 monolayers of PtSe2 show a clear semiconducting behaviour and a high mobility in excess of 200 cm2V 1s-1 at room temperature and up to 447 cm2V-1s-1 at low temperature.
93 - Hongxi Li , Linjing Wang , Tao Yu 2019
Materials with perpendicular magnetic anisotropy (PMA) effect with high Curie temperature ($T_C$) is essential in applications. In this work, $Cr_2Te_3$ thin films showing PMA with $T_C$ ranging from 165 K to 295 K were successfully grown on $Al_2O_3 $ by the molecular beam epitaxy (MBE) technique. The structural analysis, magneto-transport and magnetic characterizations were conducted to study the physical origin of the improved $T_C$. In particular, ferromagnetic (FM) and antiferromagnetic (AFM) ordering competition were investigated. A phenomenological model based on the coupling degree between FM and AFM ordering was proposed to explain the observed $T_C$ enhancement. Our findings indicate that the $T_C$ of $Cr_2Te_3$ thin film can be tuned, which make it hold the potential for various magnetic applications.
163 - B. Li , W. G. Chen , X. Guo 2016
High-index Bi2Se3(221) film has been grown on In2Se3-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi2Se3(221) can be attributed to the layered structure of Bi2 Se3 crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we have revealed the strong chemical bonding at the interface of Bi2Se3 and In2Se3 by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.
Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. T he presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا