ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum anomalous Hall multilayers grown by molecular beam epitaxy

368   0   0.0 ( 0 )
 نشر من قبل Gaoyuan Jiang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_2$Te$_3$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne$$^2$, where $h$ is the Plancks constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator.

قيم البحث

اقرأ أيضاً

We report the growth of self-assembled Bi2Se3 quantum dots (QDs) by molecular beam epitaxy on GaAs substrates using the droplet epitaxy technique. The QD formation occurs after anneal of Bismuth droplets under Selenium flux. Characterization by atomi c force microscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy and X-ray reflectance spectroscopy is presented. The quantum dots are crystalline, with hexagonal shape, and have average dimensions of 12 nm height (12 quintuple layers) and 46 nm width, and a density of $8.5 cdot 10^9 cm^{-2}$. This droplet growth technique provides a means to produce topological insulator QDs in a reproducible and controllable way, providing convenient access to a promising quantum material with singular spin properties.
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality, single crystalline thin films with large size is critical. Here we r eport the first successful layer-by-layer growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and X-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films for investigating the physical properties and potential applications of PtSe2.
Layered van der Waals (vdW) materials grown by physical vapor deposition techniques are generally assumed to have a weak interaction with the substrate during growth. This leads to films with relatively small domains that are usually triangular and a terraced morphology. In this paper, we demonstrate that Bi2Se3, a prototypical vdW material, will form a nano-column morphology when grown on GaAs(001) substrates. This morphology is explained by a relatively strong film/substrate interaction, long adatom diffusion lengths, and a high reactive selenium flux. This discovery paves the way toward growth of self-assembled vdW structures even in the absence of strain.
Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we used molecular beam epitaxy (MBE) to grow atomically thin MoSe$_2$ on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe$_2$. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.
InGaAs/GaAsBi/InGaAs quantum wells (QWs) were grown on GaAs substrates by gas source molecular beam epitaxy for realizing the type II band-edge line-up. Both type I and type II transitions were observed in the Bi containing W QWs and the photolumines cence intensity was enhanced in the sample with a high Bi content, which is mainly due to the improvement of carrier confinement. Blue-shift of type II transitions at high excitation power density was observed and ascribed to the band-bending effect. The calculated transition energies based on 8 band k.p model fit well with the experiment results. The experimental and theoretical results show that the type-II QW design is a new promising candidate for realizing long wavelength GaAs-based light emitting devices near 1.3 um.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا