ﻻ يوجد ملخص باللغة العربية
This work reports on the morphological and electrical properties of Ni-based back-side Ohmic contacts formed by laser annealing process for SiC power diodes. Nickel films, 100 nm thick, have been sputtered on the back-side of heavily doped 110 um 4H-SiC thinned substrates after mechanical grinding. Then, to achieve Ohmic behavior, the metal films have been irradiated with an UV excimer laser with a wavelength of 310 nm, an energy density of 4.7 J/cm2 and pulse duration of 160 ns. The morphological and structural properties of the samples were analyzed by means of different techniques. Nanoscale electrical analyses by conductive Atomic Force Microscopy (C-AFM) allowed correlating the morphology of the annealed metal films with their local electrical properties. Ohmic behavior of the contacts fabricated by laser annealing have been investigated and compared with the standard Rapid Thermal Annealing (RTA) process. Finally, it was integrated in the fabrication of 650V SiC Schottky diodes.
We achieved ohmic contacts down to 5 K on standard n-doped Ge samples by creating a strongly doped thin Ge layer between the metallic contacts and the Ge substrate. Thanks to the laser doping technique used, Gas Immersion Laser Doping, we could attai
We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics a
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear dop
This work reports the strain effect on the electrical properties of highly doped n-type single crystalline cubic silicon carbide (3C-SiC) transferred onto a 6-inch glass substrate employing an anodic bonding technique. The experimental data shows hig
Establishing good electrical contacts to nanoscale devices is a major issue for modern technology and contacting 2D materials is no exception to the rule. One-dimensional edge-contacts to graphene were recently shown to outperform surface contacts bu