ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphite based Schottky diodes formed on Si, GaAs and 4H-SiC substrates

66   0   0.0 ( 0 )
 نشر من قبل Arthur F. Hebard
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

قيم البحث

اقرأ أيضاً

The electrical behavior of Ni Schottky barrier formed onto heavily doped (ND>1019 cm-3) n-type phosphorous implanted silicon carbide (4H-SiC) was investigated, with a focus on the current transport mechanisms in both forward and reverse bias. The for ward current-voltage characterization of Schottky diodes showed that the predominant current transport is a thermionic-field emission mechanism. On the other hand, the reverse bias characteristics could not be described by a unique mechanism. In fact, under moderate reverse bias, implantation-induced damage is responsible for the temperature increase of the leakage current, while a pure field emission mechanism is approached with bias increasing. The potential application of metal/4H-SiC contacts on heavily doped layers in real devices are discussed.
We describe a new means for electrically creating spin polarization in semiconductors. In contrast to spin injection of electrons by tunneling through a reverse-biased Schottky barrier, we observe spin accumulation at the metal/semiconductor interfac e of forward-biased ferromagnetic Schottky diodes, which is consistent with a theory of spin-dependent reflection off the interface. Spatiotemporal Kerr microscopy is used to image the electron spin and the resulting dynamic nuclear polarization that arises from the non equilibrium carrier polarization.
333 - N. Srivastava , Guowei He , Luxmi 2011
The morphology of graphene on SiC {0001} surfaces formed in various environments including ultra-high vacuum, 1 atm of argon, and 10^-6 to 10^-4 Torr of disilane is studied by atomic force microscopy, low-energy electron microscopy, and Raman spectro scopy. The graphene is formed by heating the surface to 1100 - 1600 C, which causes preferential sublimation of the Si atoms. The argon atmosphere or the background of disilane decreases the sublimation rate so that a higher graphitization temperature is required, thus improving the morphology of the films. For the (0001) surface, large areas of monolayer-thick graphene are formed in this way, with the size of these areas depending on the miscut of the sample. Results on the (000-1) surface are more complex. This surface graphitizes at a lower temperature than for the (0001) surface and consequently the growth is more three-dimensional. In an atmosphere of argon the morphology becomes even worse, with the surface displaying markedly inhomogeneous nucleation, an effect attributed to unintentional oxidation of the surface during graphitization. Use of a disilane environment for the (000-1) surface is found to produce improved morphology, with relatively large areas of monolayer-thick graphene.
Vertical (-201) and (010) beta-Ga2O3 Schottky barrier diodes (SBDs) were fabricated on single-crystal substrates grown by edge-defined film-fed growth (EFG) method. High resolution X-ray diffraction (HRXRD) and atomic force microscopy (AFM) confirmed good crystal quality and surface morphology of the substrates. The electrical properties of both devices, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, were comprehensively measured and compared. The (-201) and (010) SBDs exhibited on-resistances (Ron) of 0.56 and 0.77 m{Omega}cm2, turn-on voltages (Von) of 1.0 and 1.3 V, Schottky barrier heights (SBH) of 1.05 and 1.20 eV, electron mobilities of 125 and 65 cm2/(Vs), respectively, with a high on-current of ~1.3 kA/cm2 and on/off ratio of ~109. The (010) SBD had a larger Von and SBH than (-201) SBD due to anisotropic surface properties (i.e., surface Fermi level pinning and band bending), as supported by X-ray photoelectron spectroscopy (XPS) measurements. Temperature-dependent I-V also revealed the inhomogeneous nature of the SBH in both devices, where (-201) SBD showed a more uniform SBH distribution. The homogeneous SBH was also extracted: 1.33 eV for (-201) SBD and 1.53 eV for (010) SBD. The reverse leakage current of the devices was well described by the two-step trap-assisted tunneling model and the one-dimensional variable range hopping conduction (1D-VRH) model. The (-201) SBD showed larger leakage current due to its lower SBH and smaller activation energy. These results indicate the crystalline anisotropy of beta-Ga2O3 can affect the electrical properties of vertical SBDs and should be taken into consideration when designing beta-Ga2O3 electronics.
This paper describes the behavior of top gated transistors fabricated using carbon, particularly epitaxial graphene on SiC, as the active material. In the past decade research has identified carbon-based electronics as a possible alternative to silic on-based electronics. This enthusiasm was spurred by high carbon nanotube carrier mobilities. However, nanotube production, placement, and control are all serious issues. Graphene, a thin sheet of graphitic carbon, can overcome some of these problems and therefore is a promising new electronic material. Although graphene devices have been built before, in this work we provide the first demonstration and systematic evaluation of arrays of a large number of transistors entirely produced using standard microelectronics methods. Graphene devices presented feature high-k dielectric, mobilities up to 5000 cm2/Vs and, Ion/Ioff ratios of up to 7, and are methodically analyzed to provide insight into the substrate properties. Typical of graphene, these micron-scale devices have negligible band gaps and therefore large leakage currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا