ترغب بنشر مسار تعليمي؟ اضغط هنا

Blind Data Detection in Massive MIMO via $ell_3$-norm Maximization over the Stiefel Manifold

98   0   0.0 ( 0 )
 نشر من قبل Ye Xue
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive MIMO has been regarded as a key enabling technique for 5G and beyond networks. Nevertheless, its performance is limited by the large overhead needed to obtain the high-dimensional channel information. To reduce the huge training overhead associated with conventional pilot-aided designs, we propose a novel blind data detection method by leveraging the channel sparsity and data concentration properties. Specifically, we propose a novel $ell_3$-norm-based formulation to recover the data without channel estimation. We prove that the global optimal solution to the proposed formulation can be made arbitrarily close to the transmitted data up to a phase-permutation ambiguity. We then propose an efficient parameter-free algorithm to solve the $ell_3$-norm problem and resolve the phase permutation ambiguity. We also derive the convergence rate in terms of key system parameters such as the number of transmitters and receivers, the channel noise power, and the channel sparsity level. Numerical experiments will show that the proposed scheme has superior performance with low computational complexity.



قيم البحث

اقرأ أيضاً

A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal co ntrol of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
Algorithms for Massive MIMO uplink detection typically rely on a centralized approach, by which baseband data from all antennas modules are routed to a central node in order to be processed. In case of Massive MIMO, where hundreds or thousands of ant ennas are expected in the base-station, this architecture leads to a bottleneck, with critical limitations in terms of interconnection bandwidth requirements. This paper presents a fully decentralized architecture and algorithms for Massive MIMO uplink based on recursive methods, which do not require a central node for the detection process. Through a recursive approach and very low complexity operations, the proposed algorithms provide a sequence of estimates that converge asymptotically to the zero-forcing solution, without the need of specific hardware for matrix inversion. The proposed solution achieves significantly lower interconnection data-rate than other architectures, enabling future scalability.
181 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
Massive machine-type communication (mMTC) has been regarded as one of the most important use scenarios in the fifth generation (5G) and beyond wireless networks, which demands scalable access for a large number of devices. While grant-free random acc ess has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. Particularly, the two key tasks in massive access systems, namely, user activity detection and data detection, were handled separately in most existing studies, which ignored the common sparsity pattern in the received pilot and data signal. Moreover, error detection and correction in the payload data provide additional mechanisms for performance improvement. In this paper, we propose a data-assisted activity detection framework, which aims at supporting more active users by reducing the activity detection error, consisting of false alarm and missed detection errors. Specifically, after an initial activity detection step based on the pilot symbols, the false alarm users are filtered by applying energy detection for the data symbols; once data symbols of some active users have been successfully decoded, their effect in activity detection will be resolved via successive pilot interference cancellation, which reduces the missed detection error. Simulation results show that the proposed algorithm effectively increases the activity detection accuracy, and it is able to support $sim 20%$ more active users compared to a conventional method in some sample scenarios.
141 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
In this paper, we propose a turbo receiver for joint activity detection and data decoding in grant-free massive random access, which iterates between a detector and a belief propagation (BP)-based channel decoder. Specifically, responsible for user a ctivity detection, channel estimation, and soft data symbol detection, the detector is developed based on a bilinear inference problem that exploits the common sparsity pattern in the received pilot and data signals. The bilinear generalized approximate message passing (BiG-AMP) algorithm is adopted to solve the problem using probabilities of the transmitted data symbols estimated by the channel decoder as prior knowledge. In addition, extrinsic information is derived from the detector to improve the channel decoding accuracy of the decoder. Simulation results show significant improvements achieved by the proposed turbo receiver compared with conventional designs.
263 - Chuan Zhang 2018
For massive multiple-input multiple-output (MIMO) systems, linear minimum mean-square error (MMSE) detection has been shown to achieve near-optimal performance but suffers from excessively high complexity due to the large-scale matrix inversion. Bein g matrix inversion free, detection algorithms based on the Gauss-Seidel (GS) method have been proved more efficient than conventional Neumann series expansion (NSE) based ones. In this paper, an efficient GS-based soft-output data detector for massive MIMO and a corresponding VLSI architecture are proposed. To accelerate the convergence of the GS method, a new initial solution is proposed. Several optimizations on the VLSI architecture level are proposed to further reduce the processing latency and area. Our reference implementation results on a Xilinx Virtex-7 XC7VX690T FPGA for a 128 base-station antenna and 8 user massive MIMO system show that our GS-based data detector achieves a throughput of 732 Mb/s with close-to-MMSE error-rate performance. Our implementation results demonstrate that the proposed solution has advantages over existing designs in terms of complexity and efficiency, especially under challenging propagation conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا