ترغب بنشر مسار تعليمي؟ اضغط هنا

Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks

69   0   0.0 ( 0 )
 نشر من قبل Mingde Zhao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, neural network based approaches have achieved significant improvement for solving large, complex, graph-structured problems. However, their bottlenecks still need to be addressed, and the advantages of multi-scale information and deep architectures have not been sufficiently exploited. In this paper, we theoretically analyze how existing Graph Convolutional Networks (GCNs) have limited expressive power due to the constraint of the activation functions and their architectures. We generalize spectral graph convolution and deep GCN in block Krylov subspace forms and devise two architectures, both with the potential to be scaled deeper but each making use of the multi-scale information in different ways. We further show that the equivalence of these two architectures can be established under certain conditions. On several node classification tasks, with or without the help of validation, the two new architectures achieve better performance compared to many state-of-the-art methods.



قيم البحث

اقرأ أيضاً

The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale both in terms of graph size and the number of model parameters. Although some work has explored training on l arge-scale graphs (e.g., GraphSAGE, ClusterGCN, etc.), we pioneer efficient training of large-scale GCN models (i.e., ultra-wide, overparameterized models) with the proposal of a novel, distributed training framework. Our proposed training methodology, called GIST, disjointly partitions the parameters of a GCN model into several, smaller sub-GCNs that are trained independently and in parallel. In addition to being compatible with any GCN architecture, GIST improves model performance, scales to training on arbitrarily large graphs, significantly decreases wall-clock training time, and enables the training of markedly overparameterized GCN models. Remarkably, with GIST, we train an astonishgly-wide 32,768-dimensional GraphSAGE model, which exceeds the capacity of a single GPU by a factor of 8X, to SOTA performance on the Amazon2M dataset.
Inspired by convolutional neural networks on 1D and 2D data, graph convolutional neural networks (GCNNs) have been developed for various learning tasks on graph data, and have shown superior performance on real-world datasets. Despite their success, there is a dearth of theoretical explorations of GCNN models such as their generalization properties. In this paper, we take a first step towards developing a deeper theoretical understanding of GCNN models by analyzing the stability of single-layer GCNN models and deriving their generalization guarantees in a semi-supervised graph learning setting. In particular, we show that the algorithmic stability of a GCNN model depends upon the largest absolute eigenvalue of its graph convolution filter. Moreover, to ensure the uniform stability needed to provide strong generalization guarantees, the largest absolute eigenvalue must be independent of the graph size. Our results shed new insights on the design of new & improved graph convolution filters with guaranteed algorithmic stability. We evaluate the generalization gap and stability on various real-world graph datasets and show that the empirical results indeed support our theoretical findings. To the best of our knowledge, we are the first to study stability bounds on graph learning in a semi-supervised setting and derive generalization bounds for GCNN models.
Laboratory testing and medication prescription are two of the most important routines in daily clinical practice. Developing an artificial intelligence system that can automatically make lab test imputations and medication recommendations can save co st on potentially redundant lab tests and inform physicians in more effective prescription. We present an intelligent model that can automatically recommend the patients medications based on their incomplete lab tests, and can even accurately estimate the lab values that have not been taken. We model the complex relations between multiple types of medical entities with their inherent features in a heterogeneous graph. Then we learn a distributed representation for each entity in the graph based on graph convolutional networks to make the representations integrate information from multiple types of entities. Since the entity representations incorporate multiple types of medical information, they can be used for multiple medical tasks. In our experiments, we construct a graph to associate patients, encounters, lab tests and medications, and conduct the two tasks: medication recommendation and lab test imputation. The experimental results demonstrate that our model can outperform the state-of-the-art models in both tasks.
Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network gra ph, users in different latent relationships like friends and colleagues, are usually connected via a bare edge that conceals such intrinsic connections. In this paper, we introduce a novel graph convolutional network (GCN), termed as factorizable graph convolutional network(FactorGCN), that explicitly disentangles such intertwined relations encoded in a graph. FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs, each of which represents a latent and disentangled relation among nodes. The features of the nodes are then aggregated separately in each factorized latent space to produce disentangled features, which further leads to better performances for downstream tasks. We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets, and demonstrate that it yields truly encouraging results in terms of both disentangling and feature aggregation. Code is publicly available at https://github.com/ihollywhy/FactorGCN.PyTorch.
While the celebrated graph neural networks yield effective representations for individual nodes of a graph, there has been relatively less success in extending to the task of graph similarity learning. Recent work on graph similarity learning has con sidered either global-level graph-graph interactions or low-level node-node interactions, however ignoring the rich cross-level interactions (e.g., between each node of one graph and the other whole graph). In this paper, we propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects in an end-to-end fashion. In particular, the proposed MGMN consists of a node-graph matching network for effectively learning cross-level interactions between each node of one graph and the other whole graph, and a siamese graph neural network to learn global-level interactions between two input graphs. Furthermore, to compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks with different sizes in order to evaluate the effectiveness and robustness of our models. Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks. Compared with previous work, MGMN also exhibits stronger robustness as the sizes of the two input graphs increase.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا