ﻻ يوجد ملخص باللغة العربية
While the celebrated graph neural networks yield effective representations for individual nodes of a graph, there has been relatively less success in extending to the task of graph similarity learning. Recent work on graph similarity learning has considered either global-level graph-graph interactions or low-level node-node interactions, however ignoring the rich cross-level interactions (e.g., between each node of one graph and the other whole graph). In this paper, we propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects in an end-to-end fashion. In particular, the proposed MGMN consists of a node-graph matching network for effectively learning cross-level interactions between each node of one graph and the other whole graph, and a siamese graph neural network to learn global-level interactions between two input graphs. Furthermore, to compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks with different sizes in order to evaluate the effectiveness and robustness of our models. Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks. Compared with previous work, MGMN also exhibits stronger robustness as the sizes of the two input graphs increase.
Graph similarity computation aims to predict a similarity score between one pair of graphs to facilitate downstream applications, such as finding the most similar chemical compounds similar to a query compound or Fewshot 3D Action Recognition. Recent
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the
In many domains where data are represented as graphs, learning a similarity metric among graphs is considered a key problem, which can further facilitate various learning tasks, such as classification, clustering, and similarity search. Recently, the
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world applications due to their strong ability in graph representation learning. GNNs explore the graph structure and node features by aggregating and transforming informat
Recent works leveraging Graph Neural Networks to approach graph matching tasks have shown promising results. Recent progress in learning discrete distributions poses new opportunities for learning graph matching models. In this work, we propose a new