ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorizable Graph Convolutional Networks

86   0   0.0 ( 0 )
 نشر من قبل Yiding Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network graph, users in different latent relationships like friends and colleagues, are usually connected via a bare edge that conceals such intrinsic connections. In this paper, we introduce a novel graph convolutional network (GCN), termed as factorizable graph convolutional network(FactorGCN), that explicitly disentangles such intertwined relations encoded in a graph. FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs, each of which represents a latent and disentangled relation among nodes. The features of the nodes are then aggregated separately in each factorized latent space to produce disentangled features, which further leads to better performances for downstream tasks. We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets, and demonstrate that it yields truly encouraging results in terms of both disentangling and feature aggregation. Code is publicly available at https://github.com/ihollywhy/FactorGCN.PyTorch.

قيم البحث

اقرأ أيضاً

Noise and inconsistency commonly exist in real-world information networks, due to inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent Graph Convolutional Networks (GCN) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. The erroneous node content, combined with sparse features, provide essential challenges for existing methods to be used on real-world noisy networks. In this paper, we propose FA-GCN, a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes learn and vary feature importance, with respect to their connections. By using spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task. Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than state-of-the-art methods on both noise-free and noisy networks.
In this paper, we study the robustness of graph convolutional networks (GCNs). Previous work have shown that GCNs are vulnerable to adversarial perturbation on adjacency or feature matrices of existing nodes; however, such attacks are usually unreali stic in real applications. For instance, in social network applications, the attacker will need to hack into either the client or server to change existing links or features. In this paper, we propose a new type of fake node attacks to attack GCNs by adding malicious fake nodes. This is much more realistic than previous attacks; in social network applications, the attacker only needs to register a set of fake accounts and link to existing ones. To conduct fake node attacks, a greedy algorithm is proposed to generate edges of malicious nodes and their corresponding features aiming to minimize the classification accuracy on the target nodes. In addition, we introduce a discriminator to classify malicious nodes from real nodes, and propose a Greedy-GAN attack to simultaneously update the discriminator and the attacker, to make malicious nodes indistinguishable from the real ones. Our non-targeted attack decreases the accuracy of GCN down to 0.03, and our targeted attack reaches a success rate of 78% on a group of 100 nodes, and 90% on average for attacking a single target node.
107 - Wei Jin , Tyler Derr , Yiqi Wang 2020
Graph Neural Networks (GNNs) have achieved tremendous success in various real-world applications due to their strong ability in graph representation learning. GNNs explore the graph structure and node features by aggregating and transforming informat ion within node neighborhoods. However, through theoretical and empirical analysis, we reveal that the aggregation process of GNNs tends to destroy node similarity in the original feature space. There are many scenarios where node similarity plays a crucial role. Thus, it has motivated the proposed framework SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure. Specifically, to balance information from graph structure and node features, we propose a feature similarity preserving aggregation which adaptively integrates graph structure and node features. Furthermore, we employ self-supervised learning to explicitly capture the complex feature similarity and dissimilarity relations between nodes. We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs. The results demonstrate that SimP-GCN outperforms representative baselines. Further probe shows various advantages of the proposed framework. The implementation of SimP-GCN is available at url{https://github.com/ChandlerBang/SimP-GCN}.
We present our ongoing work on understanding the limitations of graph convolutional networks (GCNs) as well as our work on generalizations of graph convolutions for representing more complex node attribute dependencies. Based on an analysis of GCNs w ith the help of the corresponding computation graphs, we propose a generalization of existing GCNs where the aggregation operations are (a) determined by structural properties of the local neighborhood graphs and (b) not restricted to weighted averages. We show that the proposed approach is strictly more expressive while requiring only a modest increase in the number of parameters and computations. We also show that the proposed generalization is identical to standard convolutional layers when applied to regular grid graphs.
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning partly due to their interpretability through the prism of the established graph signal processing framework. However, existing SG CNs are limited in implementing graph convolutions with rigid transforms that could not adapt to signals residing on graphs and tasks at hand. In this paper, we propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets. Specifically, the adaptive graph wavelets are learned with neural network-parameterized lifting structures, where structure-aware attention-based lifting operations are developed to jointly consider graph structures and node features. We propose to lift based on diffusion wavelets to alleviate the structural information loss induced by partitioning non-bipartite graphs. By design, the locality and sparsity of the resulting wavelet transform as well as the scalability of the lifting structure for large and varying-size graphs are guaranteed. We further derive a soft-thresholding filtering operation by learning sparse graph representations in terms of the learned wavelets, which improves the scalability and interpretablity, and yield a localized, efficient and scalable spectral graph convolution. To ensure that the learned graph representations are invariant to node permutations, a layer is employed at the input of the networks to reorder the nodes according to their local topology information. We evaluate the proposed networks in both node-level and graph-level representation learning tasks on benchmark citation and bioinformatics graph datasets. Extensive experiments demonstrate the superiority of the proposed networks over existing SGCNs in terms of accuracy, efficiency and scalability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا