ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensional crossover in the aging dynamics of spin glasses in a film geometry

66   0   0.0 ( 0 )
 نشر من قبل L. A. Fernandez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent experiments of exceptional accuracy, we study numerically the spin-glass dynamics in a film geometry. We cover all the relevant time regimes, from picoseconds to equilibrium, at temperatures at and below the 3D critical point. The dimensional crossover from 3D to 2D dynamics, that starts when the correlation length becomes comparable to the film thickness, consists of four dynamical regimes. Our analysis, based on a Renormalization Group transformation, finds consistent the overall physical picture employed by Orbach et al. in the interpretation of their experiments.



قيم البحث

اقرأ أيضاً

Aging has become the paradigm to describe dynamical behavior of glassy systems, and in particular spin glasses. Trap models have been introduced as simple caricatures of effective dynamics of such systems. In this Letter we show that in a wide class of mean field models and on a wide range of time scales, aging occurs precisely as predicted by the REM-like trap model of Bouchaud and Dean. This is the first rigorous result about aging in mean field models except for the REM and the spherical model.
107 - U. Buchenau 2019
The recent description of the cooling through the glass transition in terms of irreversible structural Eshelby rearrangements with a single average fictive temperature is extended to a distribution of fictive temperatures around the average one. The extension has only little influence on the cooling scans, but turns out to be necessary to understand the heating back to equilibrium.
Experiments on spin glasses can now make precise measurements of the exponent $z(T)$ governing the growth of glassy domains, while our computational capabilities allow us to make quantitative predictions for experimental scales. However, experimental and numerical values for $z(T)$ have differed. We use new simulations on the Janus II computer to resolve this discrepancy, finding a time-dependent $z(T, t_w)$, which leads to the experimental value through mild extrapolations. Furthermore, theoretical insight is gained by studying a crossover between the $T = T_c$ and $T = 0$ fixed points.
We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be tuned by changing the power-law exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field universality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial connected components in phase space via a clustering analysis of configurations.
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations st arting at a high temperature. The normally problematic critical slowing-down is not hampering this kind of approach, since the system equilibrates quickly at the initial temperature and the slowing-down is merely reflected in the dynamic scaling of the non-equilibrium order parameter with $v$ and the system size. The equilibrium limit does not have to be reached. For the dynamic exponent we obtain $z = 5.85(9)$ for bimodal couplings distribution and $z=6.00(10)$ for the Gaussian case, thus supporting universal dynamic scaling (in contrast to recent claims of non-universal behavior).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا