ﻻ يوجد ملخص باللغة العربية
We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations starting at a high temperature. The normally problematic critical slowing-down is not hampering this kind of approach, since the system equilibrates quickly at the initial temperature and the slowing-down is merely reflected in the dynamic scaling of the non-equilibrium order parameter with $v$ and the system size. The equilibrium limit does not have to be reached. For the dynamic exponent we obtain $z = 5.85(9)$ for bimodal couplings distribution and $z=6.00(10)$ for the Gaussian case, thus supporting universal dynamic scaling (in contrast to recent claims of non-universal behavior).
We have introduced a variational method to improve the computation of integrated correlation times in the Parallel Tempering Dynamics, obtaining a better estimate (a lower bound, at least) of the exponential correlation time. Using this determination
We present a large-scale simulation of the three-dimensional Ising spin glass with Gaussian disorder to low temperatures and large sizes using optimized population annealing Monte Carlo. Our primary focus is investigating the number of pure states re
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha
The spatially uniaxially anisotropic d=3 Ising spin glass is solved exactly on a hierarchical lattice. Five different ordered phases, namely ferromagnetic, columnar, layered, antiferromagnetic, and spin-glass phases, are found in the global phase dia
We discuss the underlying connections among the thermodynamic properties of short-ranged spin glasses, their behavior in large finite volumes, and the interfaces that separate different pure states, and also ground states and low-lying excitations.