ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrametricity and clustering of states in spin glasses: A one-dimensional view

110   0   0.0 ( 0 )
 نشر من قبل Helmut Katzgraber
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from Monte Carlo simulations to test for ultrametricity and clustering properties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law interactions where the universality class of the model can be tuned by changing the power-law exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field universality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial connected components in phase space via a clustering analysis of configurations.



قيم البحث

اقرأ أيضاً

The concept of replica symmetry breaking found in the solution of the mean-field Sherrington-Kirkpatrick spin-glass model has been applied to a variety of problems in science ranging from biological to computational and even financial analysis. Thus it is of paramount importance to understand which predictions of the mean-field solution apply to non-mean-field systems, such as realistic short-range spin-glass models. The one-dimensional spin glass with random power-law interactions promises to be an ideal test-bed to answer this question: Not only can large system sizes-which are usually a shortcoming in simulations of high-dimensional short-range system-be studied, by tuning the power-law exponent of the interactions the universality class of the model can be continuously tuned from the mean-field to the short-range universality class. We present details of the model, as well as recent applications to some questions of the physics of spin glasses. First, we study the existence of a spin-glass state in an external field. In addition, we discuss the existence of ultrametricity in short-range spin glasses. Finally, because the range of interactions can be changed, the model is a formidable test-bed for optimization algorithms.
79 - C.M. Newman 2003
We discuss the underlying connections among the thermodynamic properties of short-ranged spin glasses, their behavior in large finite volumes, and the interfaces that separate different pure states, and also ground states and low-lying excitations.
Motivated by recent experiments of exceptional accuracy, we study numerically the spin-glass dynamics in a film geometry. We cover all the relevant time regimes, from picoseconds to equilibrium, at temperatures at and below the 3D critical point. The dimensional crossover from 3D to 2D dynamics, that starts when the correlation length becomes comparable to the film thickness, consists of four dynamical regimes. Our analysis, based on a Renormalization Group transformation, finds consistent the overall physical picture employed by Orbach et al. in the interpretation of their experiments.
We test for the presence or absence of the de Almeida-Thouless line using one-dimensional power-law diluted Heisenberg spin glass model, in which the rms strength of the interactions decays with distance, r as 1/r^{sigma}. It is argued that varying t he power sigma is analogous to varying the space dimension d in a short-range model. For sigma=0.6, which is in the mean field regime regime, we find clear evidence for an AT line. For sigma = 0.85, which is in the non-mean-field regime and corresponds to a space dimension of close to 3, we find no AT line, though we cannot rule one out for very small fields. Finally for sigma=0.75, which is in the non-mean-field regime but closer to the mean-field boundary, the evidence suggests that there is an AT line, though the possibility that even larger sizes are needed to see the asymptotic behavior can not be ruled out.
We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large sy stem sizes. We find that an Almeida-Thouless line only occurs in the mean field regime, which corresponds, for a short-range spin glass, to dimension d larger than 6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا