ترغب بنشر مسار تعليمي؟ اضغط هنا

Aging rate of spin glasses from simulations matches experiments

335   0   0.0 ( 0 )
 نشر من قبل David Yllanes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experiments on spin glasses can now make precise measurements of the exponent $z(T)$ governing the growth of glassy domains, while our computational capabilities allow us to make quantitative predictions for experimental scales. However, experimental and numerical values for $z(T)$ have differed. We use new simulations on the Janus II computer to resolve this discrepancy, finding a time-dependent $z(T, t_w)$, which leads to the experimental value through mild extrapolations. Furthermore, theoretical insight is gained by studying a crossover between the $T = T_c$ and $T = 0$ fixed points.



قيم البحث

اقرأ أيضاً

We present a mean field model for spin glasses with a natural notion of distance built in, namely, the Edwards-Anderson model on the diluted D-dimensional unit hypercube in the limit of large D. We show that finite D effects are strongly dependent on the connectivity, being much smaller for a fixed coordination number. We solve the non trivial problem of generating these lattices. Afterwards, we numerically study the nonequilibrium dynamics of the mean field spin glass. Our three main findings are: (i) the dynamics is ruled by an infinite number of time-sectors, (ii) the aging dynamics consists on the growth of coherent domains with a non vanishing surface-volume ratio, and (iii) the propagator in Fourier space follows the p^4 law. We study as well finite D effects in the nonequilibrium dynamics, finding that a naive finite size scaling ansatz works surprisingly well.
133 - C.M. Newman 2003
We study chaotic size dependence of the low temperature correlations in the SK spin glass. We prove that as temperature scales to zero with volume, for any typical coupling realization, the correlations cycle through every spin configuration in every fixed observation window. This cannot happen in short-ranged models as there it would mean that every spin configuration is an infinite-volume ground state. Its occurrence in the SK model means that the commonly used `modified clustering notion of states sheds little light on the RSB solution of SK, and conversely, the RSB solution sheds little light on the thermodynamic structure of EA models.
195 - Stefan Boettcher 2008
Numerical results for the local field distributions of a family of Ising spin-glass models are presented. In particular, the Edwards-Anderson model in dimensions two, three, and four is considered, as well as spin glasses with long-range power-law-mo dulated interactions that interpolate between a nearest-neighbour Edwards-Anderson system in one dimension and the infinite-range Sherrington-Kirkpatrick model. Remarkably, the local field distributions only depend weakly on the range of the interactions and the dimensionality, and show strong similarities except for near zero local field.
168 - Fabio Muller , Stefan Schnabel , 2020
We study the bimodal Edwards-Anderson spin glass comparing established methods, namely the multicanonical method, the $1/k$-ensemble and parallel tempering, to an approach where the ensemble is modified by simulating power-law-shaped histograms in en ergy instead of flat histograms as in the standard multicanonical case. We show that by this modification a significant speed-up in terms of mean round-trip times can be achieved for all lattice sizes taken into consideration.
107 - U. Buchenau 2019
The recent description of the cooling through the glass transition in terms of irreversible structural Eshelby rearrangements with a single average fictive temperature is extended to a distribution of fictive temperatures around the average one. The extension has only little influence on the cooling scans, but turns out to be necessary to understand the heating back to equilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا