ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultralow Thermal Conductance of the van der Waals Interface between Organic Nanoribbons

79   0   0.0 ( 0 )
 نشر من قبل Yucheng Xiong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding thermal transport through nanoscale van der Waals interfaces is vital for addressing thermal management challenges in nanoelectronic devices. In this work, the interfacial thermal conductance (GCA) between copper phthalocyanine (CuPc) nanoribbons is reported to be on the order of 10^5 Wm-2K-1 at 300 K, which is over two orders of magnitude lower than the value predicted by molecular dynamics (MD) simulations for a perfectly smooth interface between two parallelly aligned CuPc nanoribbons. Further MD simulations and contact mechanics analysis reveal that surface roughness can significantly reduce the adhesion energy and effective contact area between CuPc nanoribbons, and thus result in an ultralow GCA. In addition, the adhesion energy at the interface also depends on the stacking configuration of two CuPc nanoribbons, which may also contribute to the observed ultralow GCA.


قيم البحث

اقرأ أيضاً

In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of varepsilon and mu, which is a consequence of Maxwells equations. Investigating spherically symmetric media we show that this seemingly unive rsal relationship is violated for electromagnetic vacuum forces such as the generalized van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in general relativity. We propose and analyse an experiment to probe the van der Waals anomaly with ultracold atoms. The experiment may not only test an unusual phenomenon of quantum forces, but also an analogue of dark energy, shedding light where nothing is known empirically.
Hyperbolic materials exhibit unique properties that enable a variety of intriguing applications in nanophotonics. The topological insulator Bi2Se3 represents a natural hyperbolic optical medium, both in the THz and visible range. Here, using cathodol uminescence spectroscopy and electron energy-loss spectroscopy, we demonstrate that Bi2Se3, in addition to being a hyperbolic material, supports room-temperature exciton polaritons. Moreover, we explore the behavior of hyperbolic edge exciton polaritons in Bi2Se3. Edge polaritons are hybrid modes that result from the coupling of the polaritons bound to the upper and lower edges of Bi2Se3 nanoplatelets. In particular, we use electron energy-loss spectroscopy to compare Fabry-Perot-like resonances emerging in edge polariton propagation along pristine and artificially structured edges of the nanoplatelets. The experimentally observed scattering of edge polaritons by defect structures was found to be in good agreement with finite-difference time-domain simulations. Moreover, we experimentally proved coupling of localized polaritons in identical open and closed circular nanocavities to the propagating edge polaritons. Our findings are testimony to the extraordinary capability of the hyperbolic polariton propagation to cope with the presence of defects. This provides an excellent basis for applications such as nanooptical circuitry, cloaking at the nanometer scale, as well as nanoscopic quantum technology on the nanoscale.
Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, el ectrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be tuned by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا