ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the convergence rates of inviscid limits for the free-boundary problems of the incompressible magnetohydrodynamics (MHD) with or without surface tension in $mathbb{R}^3$, where the magnetic field is identically constant on the surface and outside of the domain. First, we establish the vorticity, the normal derivatives and the regularity structure of the solutions, and develop a priori co-norm estimates including time derivatives by the vorticity system. Second, we obtain two independent sufficient conditions for the existence of strong vorticity layers: (I) the limit of the difference between the initial MHD vorticity of velocity or magnetic field and that of the ideal MHD equations is nonzero. (II) The cross product of tangential projection on the free surface of the ideal MHD strain tensor of velocity or magnetic field with the normal vector of the free surface is nonzero. Otherwise, the vorticity layer is weak. Third, we prove high order convergence rates of tangential derivatives and the first order normal derivative in standard Sobolev space, where the convergence rates depend on the ideal MHD boundary value.
This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in m
We consider the three-dimensional incompressible free-boundary magnetohydrodynamics (MHD) equations in a bounded domain with surface tension on the boundary. We establish a priori estimate for solutions in the Lagrangian coordinates with $H^{3.5}$ re
We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor s
The inviscid limit for the two-dimensional compressible viscoelastic equations on the half plane is considered under the no-slip boundary condition. When the initial deformation tensor is a perturbation of the identity matrix and the initial density
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in