ﻻ يوجد ملخص باللغة العربية
We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor sign condition holds true initially. This result is a continuation of the authors previous works [13,27,12]. Our proof is based on the combination of the techniques developed in our previous works [13,27,12], Alinhac good unknowns, and a crucial anti-symmetric structure on the boundary.
We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas develope
We consider the three-dimensional incompressible free-boundary magnetohydrodynamics (MHD) equations in a bounded domain with surface tension on the boundary. We establish a priori estimate for solutions in the Lagrangian coordinates with $H^{3.5}$ re
We study the well-posedness theory for the linearized free boundary problem of incompressible ideal magnetohydrodynamics equations in a bounded domain. We express the magnetic field in terms of the velocity field and the deformation tensors in the La
We consider 3D free-boundary compressible elastodynamic system under the Rayleigh-Taylor sign condition. It describes the motion of an isentropic inviscid elastic medium with moving boundary. The deformation tensor satisfies the neo-Hookean linear el
We consider 3D free-boundary compressible ideal magnetohydrodynamic (MHD) system under the Rayleigh-Taylor sign condition. It describes the motion of a free-surface perfect conducting fluid in an electro-magnetic field. The local well-posedness was r