ﻻ يوجد ملخص باللغة العربية
We consider the three-dimensional incompressible free-boundary magnetohydrodynamics (MHD) equations in a bounded domain with surface tension on the boundary. We establish a priori estimate for solutions in the Lagrangian coordinates with $H^{3.5}$ regularity. To the best of our knowledge, this is the first result focusing on the incompressible ideal free-boundary MHD equations with surface tension. It is worth pointing out that the $1/2$-extra spatial regularity for the flow map $eta$ is no longer required in this manuscript thanks to the presence of the surface tension on the boundary.
We prove the local well-posedness of the 3D free-boundary incompressible ideal magnetohydrodynamics (MHD) equations with surface tension, which describe the motion of a perfect conducting fluid in an electromagnetic field. We adapt the ideas develope
We show that the solution of the free-boundary incompressible ideal magnetohydrodynamic (MHD) equations with surface tension converges to that of the free-boundary incompressible ideal MHD equations without surface tension given the Rayleigh-Taylor s
In this paper, we prove the a priori estimates in Sobolev spaces for the free-boundary compressible inviscid magnetohydrodynamics equations with magnetic diffusion under the Rayleigh-Taylor physical sign condition. Our energy estimates are uniform in
In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid MHD equations in all physical spatial dimensions $n=2$ and 3 by adopting a geometrical point of view used in Christodoul
A free boundary problem for the incompressible neo-Hookean elastodynamics is studied in two and three spatial dimensions. The a priori estimates in Sobolev norms of solutions with the physical vacuum condition are established through a geometrical po