ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems

143   0   0.0 ( 0 )
 نشر من قبل Geoffrey Roeder
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mixed-effects (NLME) dynamical systems, the statistical workhorse for many experimental sciences. We cast parameter inference as stochastic optimisation of an end-to-end differentiable, block-conditional variational autoencoder. We specify the dynamics of the data-generating process as an ordinary differential equation (ODE) such that both the ODE and its solver are fully differentiable. This model class is highly flexible: the ODE right-hand sides can be a mixture of user-prescribed or white-box sub-components and neural network or black-box sub-components. Using stochastic optimisation, our amortised inference algorithm could seamlessly scale up to massive data collection pipelines (common in labs with robotic automation). Finally, our framework supports interpretability with respect to the underlying dynamics, as well as predictive generalization to unseen combinations of group components (also called zero-shot learning). We empirically validate our method by predicting the dynamic behaviour of bacteria that were genetically engineered to function as biosensors. Our implementation of the framework, the dataset, and all code to reproduce the experimental results is available at https://www.github.com/Microsoft/vi-hds .



قيم البحث

اقرأ أيضاً

Each training step for a variational autoencoder (VAE) requires us to sample from the approximate posterior, so we usually choose simple (e.g. factorised) approximate posteriors in which sampling is an efficient computation that fully exploits GPU pa rallelism. However, such simple approximate posteriors are often insufficient, as they eliminate statistical dependencies in the posterior. While it is possible to use normalizing flow approximate posteriors for continuous latents, some problems have discrete latents and strong statistical dependencies. The most natural approach to model these dependencies is an autoregressive distribution, but sampling from such distributions is inherently sequential and thus slow. We develop a fast, parallel sampling procedure for autoregressive distributions based on fixed-point iterations which enables efficient and accurate variational inference in discrete state-space latent variable dynamical systems. To optimize the variational bound, we considered two ways to evaluate probabilities: inserting the relaxed samples directly into the pmf for the discrete distribution, or converting to continuous logistic latent variables and interpreting the K-step fixed-point iterations as a normalizing flow. We found that converting to continuous latent variables gave considerable additional scope for mismatch between the true and approximate posteriors, which resulted in biased inferences, we thus used the former approach. Using our fast sampling procedure, we were able to realize the benefits of correlated posteriors, including accurate uncertainty estimates for one cell, and accurate connectivity estimates for multiple cells, in an order of magnitude less time.
Many recent invertible neural architectures are based on coupling block designs where variables are divided in two subsets which serve as inputs of an easily invertible (usually affine) triangular transformation. While such a transformation is invert ible, its Jacobian is very sparse and thus may lack expressiveness. This work presents a simple remedy by noting that subdivision and (affine) coupling can be repeated recursively within the resulting subsets, leading to an efficiently invertible block with dense, triangular Jacobian. By formulating our recursive coupling scheme via a hierarchical architecture, HINT allows sampling from a joint distribution p(y,x) and the corresponding posterior p(x|y) using a single invertible network. We evaluate our method on some standard data sets and benchmark its full power for density estimation and Bayesian inference on a novel data set of 2D shapes in Fourier parameterization, which enables consistent visualization of samples for different dimensionalities.
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological epsilon-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be epsilon-machines, irrespective of estimated transition probabilities. Properties of epsilon-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSIs effectiveness in estimating a processs randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the models inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.
104 - Kolyan Ray , Botond Szabo 2019
Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification (posterior credible sets). We investigate Bayesian inference for avera ge treatment effects from observational data, which is a challenging problem due to the missing counterfactuals and selection bias. Working in the standard potential outcomes framework, we propose a data-driven modification to an arbitrary (nonparametric) prior based on the propensity score that corrects for the first-order posterior bias, thereby improving performance. We illustrate our method for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments demonstrate significant improvement in both estimation accuracy and uncertainty quantification compared to the unmodified GP, rendering our approach highly competitive with the state-of-the-art.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا