ﻻ يوجد ملخص باللغة العربية
We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mixed-effects (NLME) dynamical systems, the statistical workhorse for many experimental sciences. We cast parameter inference as stochastic optimisation of an end-to-end differentiable, block-conditional variational autoencoder. We specify the dynamics of the data-generating process as an ordinary differential equation (ODE) such that both the ODE and its solver are fully differentiable. This model class is highly flexible: the ODE right-hand sides can be a mixture of user-prescribed or white-box sub-components and neural network or black-box sub-components. Using stochastic optimisation, our amortised inference algorithm could seamlessly scale up to massive data collection pipelines (common in labs with robotic automation). Finally, our framework supports interpretability with respect to the underlying dynamics, as well as predictive generalization to unseen combinations of group components (also called zero-shot learning). We empirically validate our method by predicting the dynamic behaviour of bacteria that were genetically engineered to function as biosensors. Our implementation of the framework, the dataset, and all code to reproduce the experimental results is available at https://www.github.com/Microsoft/vi-hds .
Each training step for a variational autoencoder (VAE) requires us to sample from the approximate posterior, so we usually choose simple (e.g. factorised) approximate posteriors in which sampling is an efficient computation that fully exploits GPU pa
Many recent invertible neural architectures are based on coupling block designs where variables are divided in two subsets which serve as inputs of an easily invertible (usually affine) triangular transformation. While such a transformation is invert
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from
We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical
Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification (posterior credible sets). We investigate Bayesian inference for avera