ترغب بنشر مسار تعليمي؟ اضغط هنا

Debiased Bayesian inference for average treatment effects

105   0   0.0 ( 0 )
 نشر من قبل Kolyan Ray
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification (posterior credible sets). We investigate Bayesian inference for average treatment effects from observational data, which is a challenging problem due to the missing counterfactuals and selection bias. Working in the standard potential outcomes framework, we propose a data-driven modification to an arbitrary (nonparametric) prior based on the propensity score that corrects for the first-order posterior bias, thereby improving performance. We illustrate our method for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments demonstrate significant improvement in both estimation accuracy and uncertainty quantification compared to the unmodified GP, rendering our approach highly competitive with the state-of-the-art.



قيم البحث

اقرأ أيضاً

Many popular methods for building confidence intervals on causal effects under high-dimensional confounding require strong ultra-sparsity assumptions that may be difficult to validate in practice. To alleviate this difficulty, we here study a new met hod for average treatment effect estimation that yields asymptotically exact confidence intervals assuming that either the conditional response surface or the conditional probability of treatment allows for an ultra-sparse representation (but not necessarily both). This guarantee allows us to provide valid inference for average treatment effect in high dimensions under considerably more generality than available baselines. In addition, we showcase that our results are semi-parametrically efficient.
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological epsilon-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be epsilon-machines, irrespective of estimated transition probabilities. Properties of epsilon-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSIs effectiveness in estimating a processs randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
It is important to estimate the local average treatment effect (LATE) when compliance with a treatment assignment is incomplete. The previously proposed methods for LATE estimation required all relevant variables to be jointly observed in a single da taset; however, it is sometimes difficult or even impossible to collect such data in many real-world problems for technical or privacy reasons. We consider a novel problem setting in which LATE, as a function of covariates, is nonparametrically identified from the combination of separately observed datasets. For estimation, we show that the direct least squares method, which was originally developed for estimating the average treatment effect under complete compliance, is applicable to our setting. However, model selection and hyperparameter tuning for the direct least squares estimator can be unstable in practice since it is defined as a solution to the minimax problem. We then propose a weighted least squares estimator that enables simpler model selection by avoiding the minimax objective formulation. Unlike the inverse probability weighted (IPW) estimator, the proposed estimator directly uses the pre-estimated weight without inversion, avoiding the problems caused by the IPW methods. We demonstrate the effectiveness of our method through experiments using synthetic and real-world datasets.
Learning in Gaussian Process models occurs through the adaptation of hyperparameters of the mean and the covariance function. The classical approach entails maximizing the marginal likelihood yielding fixed point estimates (an approach called textit{ Type II maximum likelihood} or ML-II). An alternative learning procedure is to infer the posterior over hyperparameters in a hierarchical specification of GPs we call textit{Fully Bayesian Gaussian Process Regression} (GPR). This work considers two approximation schemes for the intractable hyperparameter posterior: 1) Hamiltonian Monte Carlo (HMC) yielding a sampling-based approximation and 2) Variational Inference (VI) where the posterior over hyperparameters is approximated by a factorized Gaussian (mean-field) or a full-rank Gaussian accounting for correlations between hyperparameters. We analyze the predictive performance for fully Bayesian GPR on a range of benchmark data sets.
Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a scal able quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models. Contrary to Bayesian modeling for IV, our approach does not require additional assumptions on the data generating process, and leads to a scalable approximate inference algorithm with time cost comparable to the corresponding point estimation methods. Our algorithm can be further extended to work with neural network models. We analyze the theoretical properties of the proposed quasi-posterior, and demonstrate through empirical evaluation the competitive performance of our method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا