ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Adversarially Learned Inference

81   0   0.0 ( 0 )
 نشر من قبل Mohamed Ishmael Belghazi
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel hierarchical generative model with a simple Markovian structure and a corresponding inference model. Both the generative and inference model are trained using the adversarial learning paradigm. We demonstrate that the hierarchical structure supports the learning of progressively more abstract representations as well as providing semantically meaningful reconstructions with different levels of fidelity. Furthermore, we show that minimizing the Jensen-Shanon divergence between the generative and inference network is enough to minimize the reconstruction error. The resulting semantically meaningful hierarchical latent structure discovery is exemplified on the CelebA dataset. There, we show that the features learned by our model in an unsupervised way outperform the best handcrafted features. Furthermore, the extracted features remain competitive when compared to several recent deep supervised approaches on an attribute prediction task on CelebA. Finally, we leverage the models inference network to achieve state-of-the-art performance on a semi-supervised variant of the MNIST digit classification task.



قيم البحث

اقرأ أيضاً

We introduce the adversarially learned inference (ALI) model, which jointly learns a generation network and an inference network using an adversarial process. The generation network maps samples from stochastic latent variables to the data space whil e the inference network maps training examples in data space to the space of latent variables. An adversarial game is cast between these two networks and a discriminative network is trained to distinguish between joint latent/data-space samples from the generative network and joint samples from the inference network. We illustrate the ability of the model to learn mutually coherent inference and generation networks through the inspections of model samples and reconstructions and confirm the usefulness of the learned representations by obtaining a performance competitive with state-of-the-art on the semi-supervised SVHN and CIFAR10 tasks.
We propose a novel method for network inference from partially observed edges using a node-specific degree prior. The degree prior is derived from observed edges in the network to be inferred, and its hyper-parameters are determined by cross validati on. Then we formulate network inference as a matrix completion problem regularized by our degree prior. Our theoretical analysis indicates that this prior favors a network following the learned degree distribution, and may lead to improved network recovery error bound than previous work. Experimental results on both simulated and real biological networks demonstrate the superior performance of our method in various settings.
We introduce a flexible, scalable Bayesian inference framework for nonlinear dynamical systems characterised by distinct and hierarchical variability at the individual, group, and population levels. Our model class is a generalisation of nonlinear mi xed-effects (NLME) dynamical systems, the statistical workhorse for many experimental sciences. We cast parameter inference as stochastic optimisation of an end-to-end differentiable, block-conditional variational autoencoder. We specify the dynamics of the data-generating process as an ordinary differential equation (ODE) such that both the ODE and its solver are fully differentiable. This model class is highly flexible: the ODE right-hand sides can be a mixture of user-prescribed or white-box sub-components and neural network or black-box sub-components. Using stochastic optimisation, our amortised inference algorithm could seamlessly scale up to massive data collection pipelines (common in labs with robotic automation). Finally, our framework supports interpretability with respect to the underlying dynamics, as well as predictive generalization to unseen combinations of group components (also called zero-shot learning). We empirically validate our method by predicting the dynamic behaviour of bacteria that were genetically engineered to function as biosensors. Our implementation of the framework, the dataset, and all code to reproduce the experimental results is available at https://www.github.com/Microsoft/vi-hds .
Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations of test patterns. This problem is often formulated via a minimax objective, where the target loss is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more tractable. A primary question is that of consistency, that is, whether minimization of the surrogate risk implies minimization of the adversarial 0-1 risk. In this work, we analyze this question through the lens of calibration, which is a pointwise notion of consistency. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1 loss when restricted to the class of linear models. We further introduce a class of nonconvex losses and offer necessary and sufficient conditions for losses in this class to be calibrated. We also show that if the underlying distribution satisfies Massarts noise condition, convex losses can also be calibrated in the adversarial setting.
Adversarially robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables. Beyond the existing studies on the predictive performance to adversarial samples, our goal is to understand statistical pro perties of adversarially robust estimates and analyze adversarial risk in the setup of linear regression models. By discovering the statistical minimax rate of convergence of adversarially robust estimators, we emphasize the importance of incorporating model information, e.g., sparsity, in adversarially robust learning. Further, we reveal an explicit connection of adversarial and standard estimates, and propose a straightforward two-stage adversarial learning framework, which facilitates to utilize model structure information to improve adversarial robustness. In theory, the consistency of the adversarially robust estimator is proven and its Bahadur representation is also developed for the statistical inference purpose. The proposed estimator converges in a sharp rate under either low-dimensional or sparse scenario. Moreover, our theory confirms two phenomena in adversarially robust learning: adversarial robustness hurts generalization, and unlabeled data help improve the generalization. In the end, we conduct numerical simulations to verify our theory.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا