ترغب بنشر مسار تعليمي؟ اضغط هنا

Semilinear integro-differential equations, II: one-dimensional and saddle-shaped solutions to the Allen-Cahn equation

126   0   0.0 ( 0 )
 نشر من قبل Tom\\'as Sanz-Perela
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses saddle-shaped solutions to the semilinear equation $L_K u = f(u)$ in $mathbb{R}^{2m}$, where $L_K$ is a linear elliptic integro-differential operator with a radially symmetric kernel $K$, and $f$ is of Allen-Cahn type. Saddle-shaped solutions are doubly radial, odd with respect to the Simons cone ${(x, x) in mathbb{R}^m times mathbb{R}^m , : , |x| = |x|}$, and vanish only in this set. We establish the uniqueness and the asymptotic behavior of the saddle-shaped solution. For this, we prove a Liouville type result, the one-dimensional symmetry of positive solutions to semilinear problems in a half-space, and maximum principles in narrow sets. The existence of the solution was already proved in part I of this work.

قيم البحث

اقرأ أيضاً

In this paper we prove the uniqueness of the saddle-shaped solution to the semilinear nonlocal elliptic equation $(-Delta)^gamma u = f(u)$ in $mathbb R^{2m}$, where $gamma in (0,1)$ and $f$ is of Allen-Cahn type. Moreover, we prove that this solution is stable whenever $2mgeq 14$. As a consequence of this result and the connection of the problem with nonlocal minimal surfaces, we show that the Simons cone ${(x, x) in mathbb R^{m}times mathbb R^m : |x| = |x|}$ is a stable nonlocal $(2gamma)$-minimal surface in dimensions $2mgeq 14$. Saddle-shaped solutions of the fractional Allen-Cahn equation are doubly radial, odd with respect to the Simons cone, and vanish only in this set. It was known that these solutions exist in all even dimensions and are unstable in dimensions $2$, $4$ and $6$. Thus, after our result, the stability remains an open problem only in dimensions $8$, $10$, and $12$. The importance of studying this type of solution is due to its relation with the fractional version of a conjecture by De Giorgi. Saddle-shaped solutions are the simplest non 1D candidates to be global minimizers in high dimensions, a property not yet established in any dimension.
This is the first of two papers concerning saddle-shaped solutions to the semilinear equation $L_K u = f(u)$ in $mathbb{R}^{2m}$, where $L_K$ is a linear elliptic integro-differential operator and $f$ is of Allen-Cahn type. Saddle-shaped solutions are doubly radial, odd with respect to the Simons cone ${(x, x) in mathbb{R}^m times mathbb{R}^m , : , |x| = |x|}$, and vanish only on this set. By the odd symmetry, $L_K$ coincides with a new operator $L_K^{mathcal{O}}$ which acts on functions defined only on one side of the Simons cone, ${|x|>|x|}$, and that vanish on it. This operator $L_K^{mathcal{O}}$, which corresponds to reflect a function oddly and then apply $L_K$, has a kernel on ${|x|>|x|}$ which is different from $K$. In this first paper, we characterize the kernels $K$ for which the new kernel is positive and therefore one can develop a theory on the saddle-shaped solution. The necessary and sufficient condition for this turns out to be that $K$ is radially symmetric and $taumapsto K(sqrt tau)$ is a strictly convex function. Assuming this, we prove an energy estimate for doubly radial odd minimizers and the existence of saddle-shaped solution. In a subsequent article, part II, further qualitative properties of saddle-shaped solutions will be established, such as their asymptotic behavior, a maximum principle for the linearized operator, and their uniqueness.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett ing a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
This paper is concerned with a fully nonlinear variant of the Allen-Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. Main purposes of the paper are to prove the well-posedness, smoothing effe ct and comparison principle, to provide an equivalent reformulation of the equation as a parabolic obstacle problem and to reveal long-time behaviors of solutions. More precisely, by deriving emph{partial} energy-dissipation estimates, a global attractor is constructed in a metric setting, and it is also proved that each solution $u(x,t)$ converges to a solution of an elliptic obstacle problem as $t to +infty$.
122 - Tim Laux , Thilo Simon 2016
We present a convergence result for solutions of the vector-valued Allen-Cahn Equation. In the spirit of the work of Luckhaus and Sturzenhecker we establish convergence towards a distributional formulation of multi-phase mean-curvature flow using set s of finite perimeter. Like their result, ours relies on the assumption that the time-integrated energies of the approximations converge to those of the limit. Furthermore, we apply our proof to two variants of the equation, incorporating external forces and a volume constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا